Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Affine varieties with exotic models


Author: Zbigniew Jelonek
Journal: Proc. Amer. Math. Soc. 143 (2015), 1-4
MSC (2010): Primary 14R10, 32Q99
DOI: https://doi.org/10.1090/S0002-9939-2014-12160-5
Published electronically: August 22, 2014
MathSciNet review: 3272725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for every $ n\ge 7$ there is a smooth rational affine variety with exotic model. Moreover, we show that for every $ n\ge 6$ there are Zariski open subsets $ U_1, U_2$ of $ \mathbb{C}^n$, such that they are holomorphically but not algebraically equivalent.


References [Enhancements On Off] (What's this?)

  • [1] James Ax, Injective endomorphisms of varieties and schemes, Pacific J. Math. 31 (1969), 1-7. MR 0251036 (40 #4267)
  • [2] Adrien Dubouloz and David Finston, On exotic affine 3-spheres, preprint 2011, arXiv:1106.2900v1.
  • [3] Adrien Dubouloz, Lucy Moser-Jauslin, and P.-M. Poloni, Noncancellation for contractible affine threefolds, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4273-4284. MR 2823073 (2012e:14116), https://doi.org/10.1090/S0002-9939-2011-10869-4
  • [4] Gene Freudenburg and Lucy Moser-Jauslin, Embeddings of Danielewski surfaces, Math. Z. 245 (2003), no. 4, 823-834. MR 2020713 (2004k:14117), https://doi.org/10.1007/s00209-003-0572-5
  • [5] Zbigniew Jelonek, On the cancellation problem, Math. Ann. 344 (2009), no. 4, 769-778. MR 2507623 (2010f:14066), https://doi.org/10.1007/s00208-008-0326-0
  • [6] Zbigniew Jelonek, Manifolds with a unique embedding, Colloq. Math. 117 (2009), no. 2, 299-317. MR 2550135 (2010m:58003), https://doi.org/10.4064/cm117-2-13
  • [7] Zbigniew Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), no. 1, 1-35. MR 1717542 (2000g:14064), https://doi.org/10.1007/s002080050316
  • [8] N. Mohan Kumar, Stably free modules, Amer. J. Math. 107 (1985), no. 6, 1439-1444 (1986). MR 815767 (87c:13014), https://doi.org/10.2307/2374411
  • [9] N. Mohan Kumar, Some theorems on generation of ideals in affine algebras, Comment. Math. Helv. 59 (1984), no. 2, 243-252. MR 749107 (86d:13009), https://doi.org/10.1007/BF02566348
  • [10] Lucy Moser-Jauslin and Pierre-Marie Poloni, Embeddings of a family of Danielewski hypersurfaces and certain $ \mathbf {C}^+$-actions on $ \mathbf {C}^3$, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1567-1581 (English, with English and French summaries). MR 2273864 (2007k:14127)
  • [11] P.-M. Poloni, Classification(s) of Danielewski hypersurfaces, Transform. Groups 16 (2011), no. 2, 579-597. MR 2806502 (2012e:14115), https://doi.org/10.1007/s00031-011-9146-5
  • [12] Michael Schneider, Vollständige, fast-vollständige und mengen-theoretisch-vollständige Durchschnitte in Steinschen Mannigfaltigkeiten, Math. Ann. 260 (1982), no. 2, 151-174 (German). MR 664374 (84i:32013), https://doi.org/10.1007/BF01457234

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14R10, 32Q99

Retrieve articles in all journals with MSC (2010): 14R10, 32Q99


Additional Information

Zbigniew Jelonek
Affiliation: Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland
Email: najelone@cyf-kr.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-2014-12160-5
Keywords: Algebraic vector bundle, exotic algebraic structure
Received by editor(s): November 22, 2012
Received by editor(s) in revised form: February 6, 2013
Published electronically: August 22, 2014
Additional Notes: The author was partially supported by the grant of Polish Ministry of Science No. 2010-2013
Communicated by: Lev Borisov
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society