Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Topological conditional entropy for amenable group actions


Authors: Xiaoyao Zhou, Yaqing Zhang and Ercai Chen
Journal: Proc. Amer. Math. Soc. 143 (2015), 141-150
MSC (2010): Primary 37D35, 37A35
DOI: https://doi.org/10.1090/S0002-9939-2014-12175-7
Published electronically: August 22, 2014
MathSciNet review: 3272739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the topological conditional entropy for countable discrete amenable group actions and establish a variational principle for it.


References [Enhancements On Off] (What's this?)

  • [1] Lewis Bowen, Sofic entropy and amenable groups, Ergodic Theory Dynam. Systems 32 (2012), no. 2, 427-466. MR 2901354, https://doi.org/10.1017/S0143385711000253
  • [2] Rufus Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136. MR 0338317 (49 #3082)
  • [3] Mike Boyle and Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), no. 1, 119-161. MR 2047659 (2005d:37015), https://doi.org/10.1007/s00222-003-0335-2
  • [4] David Burguet, A direct proof of the tail variational principle and its extension to maps, Ergodic Theory Dynam. Systems 29 (2009), no. 2, 357-369. MR 2486774 (2010b:37088), https://doi.org/10.1017/S0143385708080425
  • [5] L. Wayne Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688. MR 0247030 (40 #299)
  • [6] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176-180. MR 0289746 (44 #6934)
  • [7] Wen Huang, Xiangdong Ye, and Guohua Zhang, Local entropy theory for a countable discrete amenable group action, J. Funct. Anal. 261 (2011), no. 4, 1028-1082. MR 2803841, https://doi.org/10.1016/j.jfa.2011.04.014
  • [8] F. Ledrappier, A variational principle for the topological conditional entropy, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 78-88. MR 550412 (80j:54011)
  • [9] Yuan Li, Ercai Chen, and Wen-Chiao Cheng, Tail pressure and the tail entropy function, Ergodic Theory Dynam. Systems 32 (2012), no. 4, 1400-1417. MR 2955319, https://doi.org/10.1017/S0143385711000204
  • [10] Bingbing Liang and Kesong Yan, Topological pressure for sub-additive potentials of amenable group actions, J. Funct. Anal. 262 (2012), no. 2, 584-601. MR 2854714 (2012k:37021), https://doi.org/10.1016/j.jfa.2011.09.020
  • [11] M. Misiurewicz, A short proof of the variational principle for a $ Z^{n}_{+}$action on a compact space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 12, 1069-1075 (English, with Russian summary). MR 0430213 (55 #3220)
  • [12] Michał Misiurewicz, Topological conditional entropy, Studia Math. 55 (1976), no. 2, 175-200. MR 0415587 (54 #3672)
  • [13] Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985. MR 781932 (86h:28013)
  • [14] Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. MR 910005 (88j:28014), https://doi.org/10.1007/BF02790325
  • [15] Ya. B. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50-63, 96 (Russian, with English summary). MR 775933 (86i:28031)
  • [16] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37D35, 37A35

Retrieve articles in all journals with MSC (2010): 37D35, 37A35


Additional Information

Xiaoyao Zhou
Affiliation: School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China
Email: zhouxiaoyaodeyouxian@126.com

Yaqing Zhang
Affiliation: School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China
Email: zhangyaqing45@126.com

Ercai Chen
Affiliation: School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China – and – Center of Nonlinear Science, Nanjing University, Nanjing 210093, Jiangsu, People’s Republic of China
Email: ecchen@njnu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2014-12175-7
Keywords: Topological conditional entropy, amenable group, variational principle
Received by editor(s): December 4, 2012
Received by editor(s) in revised form: February 19, 2013
Published electronically: August 22, 2014
Communicated by: Yingfei Yi
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society