Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


On the representation type of a projective variety

Author: Rosa M. Miró-Roig
Journal: Proc. Amer. Math. Soc. 143 (2015), 61-68
MSC (2010): Primary 14F99; Secondary 14J99
Published electronically: September 3, 2014
MathSciNet review: 3272732
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X\subset \mathbb{P}^n$ be a smooth arithmetically Cohen-Macaulay variety. We prove that the restriction $ \nu _{3\vert X}$ to $ X$ of the Veronese 3-uple embedding $ \nu _3:\mathbb{P}^n \longrightarrow \mathbb{P}^{{n+3\choose 3}-1}$ embeds $ X$ as a variety of wild representation type.

References [Enhancements On Off] (What's this?)

  • [BGS87] R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182. MR 877011 (88d:14005),
  • [CH] M. Casanellas, R. Hartshorne, F. Geiss, and F. Schreyer, Stable Ulrich bundles, Internat. J. Math. 23 (2012), no. 8, 12500183, 50 pp. MR 2949221
  • [CH04] Marta Casanellas and Robin Hartshorne, Gorenstein biliaison and ACM sheaves, J. Algebra 278 (2004), no. 1, 314-341. MR 2068080 (2005e:14074),
  • [CMPL12] Laura Costa, Rosa M. Miró-Roig, and Joan Pons-Llopis, The representation type of Segre varieties, Adv. Math. 230 (2012), no. 4-6, 1995-2013. MR 2927362,
  • [DG01] Yuri A. Drozd and Gert-Martin Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1-54. MR 1872612 (2002j:14039),
  • [EH88] David Eisenbud and Jürgen Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347-352. MR 929541 (89c:13012),
  • [EH92] Philippe Ellia and André Hirschowitz, Voie ouest. I. Génération de certains fibrés sur les espaces projectifs et application, J. Algebraic Geom. 1 (1992), no. 4, 531-547 (French). MR 1174900 (93h:14033)
  • [Hor64] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. MR 0169877 (30 #120)
  • [Kac80] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), no. 1, 57-92. MR 557581 (82j:16050),
  • [Mir13] R. M. Miró-Roig, The representation type of a rational normal scrolls, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 1, 153-164, DOI 10.1007/s12215-013-0113-y. MR 3031575
  • [MPLa] R. M. Miró-Roig and J. Pons-Llopis, N-dimensional Fano varieties of wild representation type, J. Pure Appl Algebra. 218 (2014), no. 10, 1867-1884, DOI 10.1016/j.jpaa.2014.02.01. MR 3195414
  • [MPLb] -, Representation type of rational ACM surfaces $ X\subseteq \mathbb{P}^4$, Algebr. Represent. Theory 16 (2013), no. 4, 1135-1157, DOI 10.1007/s10468-012-9349-z. MR 3079796
  • [To] O. Tovpyha, Graded Cohen-Macaulay rings of wild Cohen-Macaulay type, J. Pure Appl. Algebra 218 (2014), no. 9, 1628-1634. MR 3188861

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14F99, 14J99

Retrieve articles in all journals with MSC (2010): 14F99, 14J99

Additional Information

Rosa M. Miró-Roig
Affiliation: Facultat de Matemàtiques, Department d’Algebra i Geometria, University of Barcelona, Gran Via des les Corts Catalanes 585, 08007 Barcelona, Spain

Keywords: Representation type, arithmetically Cohen-Macaulay bundles, geometrically wild
Received by editor(s): June 28, 2012
Received by editor(s) in revised form: March 7, 2013
Published electronically: September 3, 2014
Additional Notes: The author was partially supported by MTM2013-45075.
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society