Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A note on the lifespan of solutions to the semilinear damped wave equation


Authors: Masahiro Ikeda and Yuta Wakasugi
Journal: Proc. Amer. Math. Soc. 143 (2015), 163-171
MSC (2010): Primary 35L71
DOI: https://doi.org/10.1090/S0002-9939-2014-12201-5
Published electronically: August 19, 2014
MathSciNet review: 3272741
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns estimates of the lifespan of solutions to the semilinear damped wave equation $ \square u+\Phi (t,x)u_t=\vert u\vert^p$ in $ (t,x)\in [0,\infty )\times \mathbf {R}^n$, where the coefficient of the damping term is $ \Phi (t,x)=\langle x\rangle ^{-\alpha }(1+t)^{-\beta }$ with $ \alpha \in [0,1),\ \beta \in (-1,1)$ and $ \alpha \beta =0$. Our novelty is to prove an upper bound of the lifespan of solutions in subcritical cases $ 1<p<2/(n-\alpha )$.


References [Enhancements On Off] (What's this?)

  • [1] M. D'Abbicco and S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Stud. 13 (2013), no. 4, 867-892. MR 3115143
  • [2] Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $ u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124 (1966). MR 0214914 (35 #5761)
  • [3] Nakao Hayashi, Elena I. Kaikina, and Pavel I. Naumkin, Damped wave equation with super critical nonlinearities, Differential Integral Equations 17 (2004), no. 5-6, 637-652. MR 2054939 (2005c:35201)
  • [4] Takafumi Hosono and Takayoshi Ogawa, Large time behavior and $ L^p$-$ L^q$ estimate of solutions of 2-dimensional nonlinear damped wave equations, J. Differential Equations 203 (2004), no. 1, 82-118. MR 2070387 (2005k:35284), https://doi.org/10.1016/j.jde.2004.03.034
  • [5] M. Ikeda, Lifespan of solutions for the nonlinear Schrödinger equation without gauge invariance, arXiv:1211.6928v1.
  • [6] Ryo Ikehata, Yasuaki Miyaoka, and Takashi Nakatake, Decay estimates of solutions for dissipative wave equations in $ \mathbf {R}^N$ with lower power nonlinearities, J. Math. Soc. Japan 56 (2004), no. 2, 365-373. MR 2048464 (2005b:35190), https://doi.org/10.2969/jmsj/1191418635
  • [7] Ryo Ikehata and Kensuke Tanizawa, Global existence of solutions for semilinear damped wave equations in $ \mathbf {R}^N$ with noncompactly supported initial data, Nonlinear Anal. 61 (2005), no. 7, 1189-1208. MR 2131649 (2005m:35192), https://doi.org/10.1016/j.na.2005.01.097
  • [8] Ryo Ikehata, Grozdena Todorova, and Borislav Yordanov, Critical exponent for semilinear wave equations with space-dependent potential, Funkcial. Ekvac. 52 (2009), no. 3, 411-435. MR 2589664 (2011i:35157), https://doi.org/10.1619/fesi.52.411
  • [9] Hendrik J. Kuiper, Life span of nonnegative solutions to certain quasilinear parabolic Cauchy problems, Electron. J. Differential Equations (2003), No. 66, 11 pp. (electronic). MR 1993774 (2004e:35109)
  • [10] Ta Tsien Li and Yi Zhou, Breakdown of solutions to $ \square u+u_t=\vert u\vert ^{1+\alpha }$, Discrete Contin. Dynam. Systems 1 (1995), no. 4, 503-520. MR 1357291 (96m:35222), https://doi.org/10.3934/dcds.1995.1.503
  • [11] Jiayun Lin, Kenji Nishihara, and Jian Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst. 32 (2012), no. 12, 4307-4320. MR 2966748, https://doi.org/10.3934/dcds.2012.32.4307
  • [12] Takashi Narazaki, $ L^p$-$ L^q$ estimates for damped wave equations and their applications to semi-linear problem, J. Math. Soc. Japan 56 (2004), no. 2, 585-626. MR 2048476 (2005a:35206), https://doi.org/10.2969/jmsj/1191418647
  • [13] Kenji Nishihara, $ L^p$-$ L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z. 244 (2003), no. 3, 631-649. MR 1992029 (2005b:35168)
  • [14] K. Nishihara, $ L^p$-$ L^q$ estimates for the 3-D damped wave equation and their application to the semilinear problem, Seminar Notes of Math. Sci., 6, Ibaraki Univ., 2003, 69-83.
  • [15] Kenji Nishihara, Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping, Tokyo J. Math. 34 (2011), no. 2, 327-343. MR 2918909, https://doi.org/10.3836/tjm/1327931389
  • [16] Kosuke Ono, Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations, Discrete Contin. Dyn. Syst. 9 (2003), no. 3, 651-662. MR 1974531 (2004b:35237), https://doi.org/10.3934/dcds.2003.9.651
  • [17] Fuqin Sun, Life span of blow-up solutions for higher-order semilinear parabolic equations, Electron. J. Differential Equations (2010), No. 17, 9. MR 2592002 (2011d:35265)
  • [18] Grozdena Todorova and Borislav Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001), no. 2, 464-489. MR 1846744 (2002k:35218), https://doi.org/10.1006/jdeq.2000.3933
  • [19] Grozdena Todorova and Borislav Yordanov, Weighted $ L^2$-estimates of dissipative wave equations with variable coefficients, J. Differential Equations 246 (2009), no. 12, 4497-4518. MR 2523291 (2010i:35219), https://doi.org/10.1016/j.jde.2009.03.020
  • [20] Yuta Wakasugi, Small data global existence for the semilinear wave equation with space-time dependent damping, J. Math. Anal. Appl. 393 (2012), no. 1, 66-79. MR 2921649, https://doi.org/10.1016/j.jmaa.2012.03.035
  • [21] Jens Wirth, Wave equations with time-dependent dissipation. I. Non-effective dissipation, J. Differential Equations 222 (2006), no. 2, 487-514. MR 2208294 (2007d:35171), https://doi.org/10.1016/j.jde.2005.07.019
  • [22] Jens Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation, J. Differential Equations 232 (2007), no. 1, 74-103. MR 2281190 (2007k:35293), https://doi.org/10.1016/j.jde.2006.06.004
  • [23] Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 2, 109-114 (English, with English and French summaries). MR 1847355 (2003d:35189), https://doi.org/10.1016/S0764-4442(01)01999-1
  • [24] Yong Zhou, A blow-up result for a nonlinear wave equation with damping and vanishing initial energy in $ \mathbb{R}^N$, Appl. Math. Lett. 18 (2005), no. 3, 281-286. MR 2121037 (2005i:35197), https://doi.org/10.1016/j.aml.2003.07.018

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35L71

Retrieve articles in all journals with MSC (2010): 35L71


Additional Information

Masahiro Ikeda
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Address at time of publication: Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
Email: mikeda@math.kyoto-u.ac.jp

Yuta Wakasugi
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Email: y-wakasugi@cr.math.sci.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2014-12201-5
Keywords: Semilinear damped wave equation, lifespan, upper bound
Received by editor(s): February 2, 2013
Received by editor(s) in revised form: February 28, 2013
Published electronically: August 19, 2014
Communicated by: Joachim Krieger
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society