Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Construction of pathological Gâteaux differentiable functions


Authors: Robert Deville, Milen Ivanov and Sebastián Lajara
Journal: Proc. Amer. Math. Soc. 143 (2015), 129-139
MSC (2010): Primary 46B20, 46G05; Secondary 46T20
DOI: https://doi.org/10.1090/S0002-9939-2014-12206-4
Published electronically: August 15, 2014
MathSciNet review: 3272738
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for many pairs $ (X,Y)$ of classical Banach spaces, there exists a bounded, Lipschitz, Gâteaux differentiable function from $ X$ to $ Y$ whose derivatives are all far apart.


References [Enhancements On Off] (What's this?)

  • [1] Fernando Albiac and Nigel J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2006. MR 2192298 (2006h:46005)
  • [2] Spiros A. Argyros and Richard G. Haydon, A hereditarily indecomposable $ \mathcal {L}_\infty $-space that solves the scalar-plus-compact problem, Acta Math. 206 (2011), no. 1, 1-54. MR 2784662 (2012e:46031), https://doi.org/10.1007/s11511-011-0058-y
  • [3] D. Azagra, M. Jiménez-Sevilla, and R. Deville, On the range of the derivatives of a smooth function between Banach spaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 1, 163-185. MR 1937801 (2004c:46069), https://doi.org/10.1017/S0305004102006278
  • [4] D. Azagra, M. Fabian, and M. Jiménez-Sevilla, Exact filling of figures with the derivatives of smooth mappings between Banach spaces, Canad. Math. Bull. 48 (2005), no. 4, 481-499. MR 2176147 (2006f:46011), https://doi.org/10.4153/CMB-2005-045-9
  • [5] Frédéric Bayart, Linearity of sets of strange functions, Michigan Math. J. 53 (2005), no. 2, 291-303. MR 2152701 (2006b:46048), https://doi.org/10.1307/mmj/1123090769
  • [6] J. M. Borwein, M. Fabian, and P. D. Loewen, The range of the gradient of a Lipschitz $ C^1$-smooth bump in infinite dimensions, Israel J. Math. 132 (2002), 239-251. MR 1952623 (2003j:58011), https://doi.org/10.1007/BF02784514
  • [7] Peter G. Casazza and Thaddeus J. Shura, Tsirel'son's space. With an appendix by J. Baker, O. Slotterbeck and R. Aron, Lecture Notes in Mathematics, vol. 1363, Springer-Verlag, Berlin, 1989. MR 981801 (90b:46030)
  • [8] Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow, 1993. MR 1211634 (94d:46012)
  • [9] Robert Deville and Petr Hájek, On the range of the derivative of Gateaux-smooth functions on separable Banach spaces, Israel J. Math. 145 (2005), 257-269. MR 2154729 (2007e:46035), https://doi.org/10.1007/BF02786693
  • [10] Marián Fabian, Ondřej F. K. Kalenda, and Jan Kolář, Filling analytic sets by the derivatives of $ C^1$-smooth bumps, Proc. Amer. Math. Soc. 133 (2005), no. 1, 295-303. MR 2086222 (2005f:46089), https://doi.org/10.1090/S0002-9939-04-07730-5
  • [11] T. Gaspari, On the range of the derivative of a real-valued function with bounded support, Studia Math. 153 (2002), no. 1, 81-99. MR 1948929 (2003k:46057), https://doi.org/10.4064/sm153-1-6
  • [12] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I., Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer-Verlag, Berlin, 1977. MR 0500056 (58 #17766)
  • [13] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II., Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin, 1979. MR 540367 (81c:46001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B20, 46G05, 46T20

Retrieve articles in all journals with MSC (2010): 46B20, 46G05, 46T20


Additional Information

Robert Deville
Affiliation: Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351, cours de la Libération, 33400 Talence, France
Email: Robert.Deville@math.u-bordeaux1.fr

Milen Ivanov
Affiliation: Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria
Email: milen@fmi.uni-sofia.bg

Sebastián Lajara
Affiliation: Departamento de Matemáticas, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
Email: Sebastian.Lajara@uclm.es

DOI: https://doi.org/10.1090/S0002-9939-2014-12206-4
Received by editor(s): July 10, 2012
Received by editor(s) in revised form: January 14, 2013, and February 13, 2013
Published electronically: August 15, 2014
Additional Notes: The second author was partially supported by NIS-SU, contract No. 133/2012.
The third author was partialy supported by MTM2011-25377 (Ministerio de Ciencia e Innovación) and by JCCM PEII11-0132-7661.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society