Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Trace theorems: critical cases and best constants


Authors: Michael Ruzhansky and Mitsuru Sugimoto
Journal: Proc. Amer. Math. Soc. 143 (2015), 227-237
MSC (2010): Primary 35B65, 35E15, 46E35, 35Q41, 42B37; Secondary 42B99, 42B35, 35S05, 35Q40
DOI: https://doi.org/10.1090/S0002-9939-2014-12207-6
Published electronically: August 28, 2014
MathSciNet review: 3272748
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to present the critical cases of the trace theorems for the restriction of functions to closed surfaces and to give the asymptotics for the norms of the traces under dilations of the surface. We also discuss the best constants for them.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Barceló, J. M. Bennett, and A. Ruiz, Spherical perturbations of Schrödinger equations, J. Fourier Anal. Appl. 12 (2006), no. 3, 269-290. MR 2235168 (2007a:35121), https://doi.org/10.1007/s00041-006-6003-3
  • [2] Matania Ben-Artzi and Allen Devinatz, The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (1987), no. 364, iv+70. MR 878907 (88e:35142)
  • [3] M. Ben-Artzi and A. Devinatz, Local smoothing and convergence properties of Schrödinger type equations, J. Funct. Anal. 101 (1991), no. 2, 231-254. MR 1136935 (92k:35064), https://doi.org/10.1016/0022-1236(91)90157-Z
  • [4] Matania Ben-Artzi and Sergiu Klainerman, Decay and regularity for the Schrödinger equation, Festschrift on the occasion of the 70th birthday of Shmuel Agmon, J. Anal. Math. 58 (1992), 25-37. MR 1226935 (94e:35053), https://doi.org/10.1007/BF02790356
  • [5] N. Bez and M. Sugimoto, Optimal constants and extremisers for some smoothing estimates, arXiv:1206.5110.
  • [6] N. Burq, Smoothing effect for Schrödinger boundary value problems, Duke Math. J. 123 (2004), no. 2, 403-427 (English, with English and French summaries). MR 2066943 (2006e:35026), https://doi.org/10.1215/S0012-7094-04-12326-7
  • [7] N. Burq, P. Gérard, and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 3, 295-318 (English, with English and French summaries). MR 2068304 (2005g:35264), https://doi.org/10.1016/S0294-1449(03)00040-4
  • [8] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), no. 2, 413-439. MR 928265 (89d:35150), https://doi.org/10.2307/1990923
  • [9] Shin-ichi Doi, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J. 82 (1996), no. 3, 679-706. MR 1387689 (97f:58141), https://doi.org/10.1215/S0012-7094-96-08228-9
  • [10] Shin-ichi Doi, Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow, Math. Ann. 318 (2000), no. 2, 355-389. MR 1795567 (2001h:58045), https://doi.org/10.1007/s002080000128
  • [11] Tosio Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1965/1966), 258-279. MR 0190801 (32 #8211)
  • [12] Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93-128. MR 759907 (86f:35160)
  • [13] Tosio Kato and Kenji Yajima, Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys. 1 (1989), no. 4, 481-496. MR 1061120 (91i:47013), https://doi.org/10.1142/S0129055X89000171
  • [14] Akihiko Miyachi, On some estimates for the wave equation in $ L^{p}$ and $ H^{p}$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 331-354. MR 586454 (83g:35060)
  • [15] Michael Ruzhansky and Mitsuru Sugimoto, A smoothing property of Schrödinger equations in the critical case, Math. Ann. 335 (2006), no. 3, 645-673. MR 2221126 (2007e:35237), https://doi.org/10.1007/s00208-006-0757-4
  • [16] Michael Ruzhansky and Mitsuru Sugimoto, Smoothing properties of evolution equations via canonical transforms and comparison principle, Proc. Lond. Math. Soc. (3) 105 (2012), no. 2, 393-423. MR 2959931, https://doi.org/10.1112/plms/pds006
  • [17] Michael Ruzhansky and Mitsuru Sugimoto, Structural resolvent estimates and derivative nonlinear Schrödinger equations, Comm. Math. Phys. 314 (2012), no. 2, 281-304. MR 2958953, https://doi.org/10.1007/s00220-012-1524-x
  • [18] Barry Simon, Best constants in some operator smoothness estimates, J. Funct. Anal. 107 (1992), no. 1, 66-71. MR 1165866 (93e:47064), https://doi.org/10.1016/0022-1236(92)90100-W
  • [19] Per Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699-715. MR 904948 (88j:35026), https://doi.org/10.1215/S0012-7094-87-05535-9
  • [20] Mitsuru Sugimoto, Global smoothing properties of generalized Schrödinger equations, J. Anal. Math. 76 (1998), 191-204. MR 1676995 (2000a:35033), https://doi.org/10.1007/BF02786935
  • [21] Mitsuru Sugimoto, A smoothing property of Schrödinger equations along the sphere, J. Anal. Math. 89 (2003), 15-30. MR 1981912 (2004e:35188), https://doi.org/10.1007/BF02893075
  • [22] Luis Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874-878. MR 934859 (89d:35046), https://doi.org/10.2307/2047326
  • [23] Björn G. Walther, Regularity, decay, and best constants for dispersive equations, J. Funct. Anal. 189 (2002), no. 2, 325-335. MR 1891852 (2003a:35218), https://doi.org/10.1006/jfan.2001.3863
  • [24] Kazuo Watanabe, Smooth perturbations of the selfadjoint operator $ \vert \Delta \vert ^{\alpha /2}$, Tokyo J. Math. 14 (1991), no. 1, 239-250. MR 1108171 (92j:47094), https://doi.org/10.3836/tjm/1270130504

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B65, 35E15, 46E35, 35Q41, 42B37, 42B99, 42B35, 35S05, 35Q40

Retrieve articles in all journals with MSC (2010): 35B65, 35E15, 46E35, 35Q41, 42B37, 42B99, 42B35, 35S05, 35Q40


Additional Information

Michael Ruzhansky
Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
Email: m.ruzhansky@imperial.ac.uk

Mitsuru Sugimoto
Affiliation: Graduate School of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
Email: sugimoto@math.nagoya-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2014-12207-6
Received by editor(s): September 26, 2012
Received by editor(s) in revised form: March 20, 2013
Published electronically: August 28, 2014
Additional Notes: The first author was supported by the EPSRC Leadership Fellowship EP/G007233/1
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society