Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Necessary conditions of solvability and isoperimetric estimates for some Monge-Ampère problems in the plane


Author: Cristian Enache
Journal: Proc. Amer. Math. Soc. 143 (2015), 309-315
MSC (2010): Primary 35J60, 35J96, 35J25, 35B50; Secondary 53C45
DOI: https://doi.org/10.1090/S0002-9939-2014-12222-2
Published electronically: September 24, 2014
MathSciNet review: 3272756
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is mainly devoted to the solvability of the
Monge-Ampère equation $ \det \left ( D^{2}u\right ) =1,$ in a $ C^{2}$ bounded strictly convex domain $ \Omega \subset \mathbb{R}^{2}$, subject to a contact angle boundary condition. A necessary condition for the solvability of this problem, involving the maximal value of the curvature $ k\left ( s\right ) $ of $ \partial \Omega $ and the contact angle, was derived by X.-N. Ma in 1999, making use of a maximum principle for an appropriate P-function. Our main goal here is to prove a complementary result. More precisely, we will derive a new necessary condition of solvability, involving the minimal value of the curvature $ k\left ( s\right ) $ of $ \partial \Omega $ and the contact angle. The main ingredients of our proof are the derivation of a minimum principle for the P-function employed by X.-N. Ma in his proof, respectively, the use of some computations in normal coordinates with respect to the boundary $ \partial \Omega $. Finally, a similar minimum principle will be employed to derive some isoperimetric estimates for the classical convex solution of the Monge-Ampère equation, subject to the homogeneous Dirichlet boundary condition.


References [Enhancements On Off] (What's this?)

  • [1] C. Bandle, On isoperimetric gradient bounds for Poisson problems and problems of torsional creep, Z. Angew. Math. Phys. 30 (1979), no. 4, 713-715 (English, with German summary). MR 547661 (80i:49005), https://doi.org/10.1007/BF01590849
  • [2] L. Barbu, On some estimates for a fluid surface in a short capillary tube, Appl. Math. Comput. 219 (2013), no. 15, 8192-8197. MR 3037527, https://doi.org/10.1016/j.amc.2013.02.016
  • [3] L. Barbu and C. Enache, A minimum principle for a soap film problem in $ \mathbb{R}^2$, Z. Angew. Math. Phys. 64 (2013), no. 2, 321-328. MR 3041572, https://doi.org/10.1007/s00033-012-0240-x
  • [4] L. Barbu and C. Enache, A maximum principle for some fully nonlinear elliptic equations with applications to Weingarten hypersurfaces, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1725-1736.MR 3170732 DOI:10.1080/17476933.2012.712966.
  • [5] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369-402. MR 739925 (87f:35096), https://doi.org/10.1002/cpa.3160370306
  • [6] C. Enache, Maximum principles and symmetry results for a class of fully nonlinear elliptic PDEs, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 5, 591-600. MR 2728539 (2012a:35033), https://doi.org/10.1007/s00030-010-0070-5
  • [7] E. Hopf, Elementare Bemerkung über die Lösung partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Berlin Sber. Preuss. Akad. Wiss 19 (1927), 147-152.
  • [8] E. Hopf, A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc. 3 (1952), 791-793. MR 0050126 (14,280b)
  • [9] P.-L. Lions, N. S. Trudinger, and J. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. 39 (1986), no. 4, 539-563. MR 840340 (87j:35114), https://doi.org/10.1002/cpa.3160390405
  • [10] X.-N Ma, A necessary condition of solvability for the capillarity boundary of Monge-Ampère equations in two dimensions, Proc. Amer. Math. Soc. 127 (1999), no. 3, 763-769. MR 1487323 (99f:35058), https://doi.org/10.1090/S0002-9939-99-04750-4
  • [11] X.-N. Ma, A sharp minimum principle for the problem of torsional rigidity, J. Math. Anal. Appl. 233 (1999), no. 1, 257-265. MR 1684385 (2000b:35101), https://doi.org/10.1006/jmaa.1999.6291
  • [12] X.-N. Ma, Sharp size estimates for capillary free surfaces without gravity, Pacific J. Math. 192 (2000), no. 1, 121-134. MR 1741026 (2000m:35075), https://doi.org/10.2140/pjm.2000.192.121
  • [13] L. E. Payne and G. A. Philippin, Some remarks on the problems of elastic torsion and of torsional creep, in Some Aspects of Mechanics of Continua, Part I, Jadavpur Univ. Calcutta, India (1977), 32-40.
  • [14] G. A. Philippin, A minimum principle for the problem of torsional creep, J. Math. Anal. Appl. 68 (1979), no. 2, 526-535. MR 533510 (80f:73042), https://doi.org/10.1016/0022-247X(79)90133-1
  • [15] G. A. Philippin and V. Proytcheva, A minimum principle for the problem of St-Venant in $ \mathbb{R}^N$, $ N\ge 2$, Z. Angew. Math. Phys. 63 (2012), no. 6, 1085-1090. MR 3000716, https://doi.org/10.1007/s00033-012-0217-9
  • [16] G. A. Philippin and A. Safoui, Some applications of the maximum principle to a variety of fully nonlinear elliptic PDE's, Special issue dedicated to Lawrence E. Payne, Z. Angew. Math. Phys. 54 (2003), no. 5, 739-755. MR 2019177 (2004j:35105), https://doi.org/10.1007/s00033-003-3200-7
  • [17] G. A. Philippin and A. Safoui, Some minimum principles for a class of elliptic boundary value problems, Appl. Anal. 83 (2004), no. 3, 231-241. MR 2033237 (2004m:35028), https://doi.org/10.1080/00036810310001632754
  • [18] R. P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press Inc., New York, 1981. MR 615561 (84a:35033)
  • [19] J. Urbas, Nonlinear oblique boundary value problems for Hessian equations in two dimensions, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 5, 507-575. MR 1353259 (96h:35071)
  • [20] J. Urbas, A note on the contact angle boundary condition for Monge-Ampère equations, Proc. Amer. Math. Soc. 128 (2000), no. 3, 853-855. MR 1646210 (2000e:35049), https://doi.org/10.1090/S0002-9939-99-05222-3

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J60, 35J96, 35J25, 35B50, 53C45

Retrieve articles in all journals with MSC (2010): 35J60, 35J96, 35J25, 35B50, 53C45


Additional Information

Cristian Enache
Affiliation: Department of Mathematics and Informatics, Ovidius University of Constanta, Constanta, 900527, Romania
Email: cenache@univ-ovidius.ro

DOI: https://doi.org/10.1090/S0002-9939-2014-12222-2
Received by editor(s): January 8, 2013
Received by editor(s) in revised form: April 7, 2013
Published electronically: September 24, 2014
Additional Notes: The author was supported by the strategic grant POSDRU/88/1.5/S/49516 Project ID 49516 (2009), co-financed by the European Social Fund Investing in People, within the Sectorial Operational Programme Human Resources Development 2007–2013.
Communicated by: Joachim Krieger
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society