Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Myhill property for cellular automata on amenable semigroups


Authors: Tullio Ceccherini-Silberstein and Michel Coornaert
Journal: Proc. Amer. Math. Soc. 143 (2015), 327-339
MSC (2010): Primary 43A07, 37B15, 68Q80
DOI: https://doi.org/10.1090/S0002-9939-2014-12227-1
Published electronically: September 16, 2014
MathSciNet review: 3272758
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a cancellative left-amenable semigroup and let $ A$ be a finite set. We prove that every pre-injective cellular automaton $ \tau \colon A^S \to A^S$ is surjective.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 43A07, 37B15, 68Q80

Retrieve articles in all journals with MSC (2010): 43A07, 37B15, 68Q80


Additional Information

Tullio Ceccherini-Silberstein
Affiliation: Dipartimento di Ingegneria, Università del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
Email: tceccher@mat.uniroma3.it

Michel Coornaert
Affiliation: Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René-Descartes, 67000 Strasbourg, France
Email: coornaert@math.unistra.fr

DOI: https://doi.org/10.1090/S0002-9939-2014-12227-1
Keywords: Cellular automaton, semigroup, pre-injectivity, Garden of Eden theorem, amenable semigroup, F{\o}lner net, entropy
Received by editor(s): February 21, 2013
Received by editor(s) in revised form: February 24, 2013, and April 8, 2013
Published electronically: September 16, 2014
Dedicated: Dedicated to Slava Grigorchuk on his 60th birthday
Communicated by: Nimish Shah
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society