Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Parabolic comparison principle and quasiminimizers in metric measure spaces


Authors: Juha Kinnunen and Mathias Masson
Journal: Proc. Amer. Math. Soc. 143 (2015), 621-632
MSC (2010): Primary 30L99, 35K92
DOI: https://doi.org/10.1090/S0002-9939-2014-12236-2
Published electronically: November 3, 2014
MathSciNet review: 3283649
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give several characterizations of parabolic (quasisuper)-
minimizers in a metric measure space equipped with a doubling measure and supporting a Poincaré inequality. We also prove a version of comparison principle for super- and subminimizers on parabolic space-time cylinders and a uniqueness result for minimizers of a boundary value problem. We also give an example showing that the corresponding results do not hold, in general, for quasiminimizers even in the Euclidean case.


References [Enhancements On Off] (What's this?)

  • [B] Anders Björn, A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), no. 4, 809-825. MR 2271223 (2007h:35136), https://doi.org/10.4171/CMH/75
  • [BB] Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. MR 2867756
  • [GG1] Mariano Giaquinta and Enrico Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46. MR 666107 (84b:58034), https://doi.org/10.1007/BF02392725
  • [GG2] Mariano Giaquinta and Enrico Giusti, Quasiminima, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 79-107. MR 778969 (86m:35054)
  • [H] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • [HK] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61. MR 1654771 (99j:30025), https://doi.org/10.1007/BF02392747
  • [KKM] Tero Kilpeläinen, Juha Kinnunen, and Olli Martio, Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), no. 3, 233-247. MR 1752853 (2000m:46071), https://doi.org/10.1023/A:1008601220456
  • [KL] Juha Kinnunen and Peter Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4) 185 (2006), no. 3, 411-435. MR 2231032 (2007f:35140), https://doi.org/10.1007/s10231-005-0160-x
  • [KMMP] J. Kinnunen, N. Marola, M. Miranda Jr., and F. Paronetto, Harnack's inequality for parabolic De Giorgi classes in metric spaces, Adv. Differential Equations 17 (2012), no. 9-10, 801-832. MR 2985675
  • [KM] Juha Kinnunen and Olli Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 459-490. MR 1996447 (2004b:31010)
  • [KS] Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401-423. MR 1856619 (2002i:35054), https://doi.org/10.1007/s002290100193
  • [KKP] Riikka Korte, Tuomo Kuusi, and Mikko Parviainen, A connection between a general class of superparabolic functions and supersolutions, J. Evol. Equ. 10 (2010), no. 1, 1-20. MR 2602924 (2011c:35283), https://doi.org/10.1007/s00028-009-0037-3
  • [KKS] Riikka Korte, Tuomo Kuusi, and Juhana Siljander, Obstacle problem for nonlinear parabolic equations, J. Differential Equations 246 (2009), no. 9, 3668-3680. MR 2515173 (2010e:35141), https://doi.org/10.1016/j.jde.2009.02.006
  • [MMPP] M. Masson, M. Miranda Jr., F. Paronetto, and M. Parviainen, Local higher integrability for parabolic quasiminimizers in metric spaces, Ricerche di Matematica 62 (2013), no. 2, 279-305. MR 3120053
  • [MS] Mathias Masson and Juhana Siljander, Hölder regularity for parabolic De Giorgi classes in metric measure spaces, Manuscripta Math. 142 (2013), no. 1-2, 187-214. MR 3081004, https://doi.org/10.1007/s00229-012-0598-2
  • [S1] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243-279. MR 1809341 (2002b:46059), https://doi.org/10.4171/RMI/275
  • [S2] Nageswari Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021-1050. MR 1879250 (2003c:31010)
  • [W] Wilfried Wieser, Parabolic $ Q$-minima and minimal solutions to variational flow, Manuscripta Math. 59 (1987), no. 1, 63-107. MR 901250 (88j:35085), https://doi.org/10.1007/BF01171265
  • [Z1] Shu Lin Zhou, On the local behaviour of parabolic $ Q$-minima, J. Partial Differential Equations 6 (1993), no. 3, 255-272. MR 1234575 (94j:35028)
  • [Z2] Shu Lin Zhou, Parabolic $ Q$-minima and their application, J. Partial Differential Equations 7 (1994), no. 4, 289-322. MR 1303750 (96c:35100)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30L99, 35K92

Retrieve articles in all journals with MSC (2010): 30L99, 35K92


Additional Information

Juha Kinnunen
Affiliation: Department of Mathematics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
Email: juha.k.kinnunen@aalto.fi

Mathias Masson
Affiliation: Department of Mathematics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
Email: mathiasmasson@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-12236-2
Received by editor(s): January 11, 2013
Received by editor(s) in revised form: April 10, 2013
Published electronically: November 3, 2014
Communicated by: Joachim Krieger
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society