Bilateral series and Ramanujan's radial limits

Authors:
J. Bajpai, S. Kimport, J. Liang, D. Ma and J. Ricci

Journal:
Proc. Amer. Math. Soc. **143** (2015), 479-492

MSC (2010):
Primary 11F37, 33D15

Published electronically:
October 22, 2014

MathSciNet review:
3283638

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Ramanujan's last letter to Hardy explored the asymptotic properties of modular forms, as well as those of certain interesting -series which he called *mock theta functions*. For his mock theta function , he claimed that as approaches an even order root of unity ,

**[1]**George E. Andrews and F. G. Garvan,*Ramanujan’s “lost” notebook. VI. The mock theta conjectures*, Adv. in Math.**73**(1989), no. 2, 242–255. MR**987276**, 10.1016/0001-8708(89)90070-4**[2]**Nathan J. Fine,*Basic hypergeometric series and applications*, Mathematical Surveys and Monographs, vol. 27, American Mathematical Society, Providence, RI, 1988. With a foreword by George E. Andrews. MR**956465**- [3]
A. Folsom, K. Ono, and R. Rhoades,
*-series and quantum modular forms*, submitted for publication. - [4]
A. Folsom, K. Ono, and R. Rhoades,
*Ramanujan's radial limits*, submitted for publication. **[5]**George Gasper and Mizan Rahman,*Basic hypergeometric series*, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR**1052153**- [6]
B. Gordon and R. McIntosh,
*A survey of the classical mock theta functions, Partitions, -series, and modular forms*, Dev. Math.**23**, Springer-Verlag, New York, 2012, 95-244. - [7]
M. Griffin, K. Ono, and L. Rolen
*Ramanujan's mock theta functions*, Proceedings of the National Academy of Sciences, USA,**110**, No. 15 (2013), pages 5765-5768. **[8]**Dean Hickerson,*A proof of the mock theta conjectures*, Invent. Math.**94**(1988), no. 3, 639–660. MR**969247**, 10.1007/BF01394279**[9]**Daniel S. Kubert and Serge Lang,*Modular units*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR**648603****[10]**Ken Ono,*The web of modularity: arithmetic of the coefficients of modular forms and 𝑞-series*, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR**2020489****[11]**G. N. Watson,*The Mock Theta Functions (2)*, Proc. London Math. Soc.**S2-42**, no. 1, 274. MR**1577032**, 10.1112/plms/s2-42.1.274- [12]
D. Zagier,
*Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann),*Séminaire Bourbaki Vol. 2007/2008, Astérisque No. 326 (2009), Exp. No. 986, vii-viii, 143-164 (2010). MR2695321 (2011k:11049). **[13]**S. P. Zwegers,*Mock 𝜃-functions and real analytic modular forms*, 𝑞-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 269–277. MR**1874536**, 10.1090/conm/291/04907- [14]
S. Zwegers,
*Mock theta functions*, Ph.D. Thesis (Advisor: D. Zagier), Universiteit Utrecht, 2002.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11F37,
33D15

Retrieve articles in all journals with MSC (2010): 11F37, 33D15

Additional Information

**J. Bajpai**

Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1. Canada

Email:
jitendra@math.ualberta.ca

**S. Kimport**

Affiliation:
Department of Mathematics, Yale University, New Haven, Connecticut 06520

Email:
susie.kimport@yale.edu

**J. Liang**

Affiliation:
Department of Mathematics, University of Florida, Gainesville, Florida 32601

Email:
jieliang@ufl.edu

**D. Ma**

Affiliation:
Department of Mathematics, University of Arizona, Tucson, Arizona 85721

Email:
martin@math.arizona.edu

**J. Ricci**

Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459

Email:
jricci@wesleyan.edu

DOI:
https://doi.org/10.1090/S0002-9939-2014-12249-0

Received by editor(s):
April 24, 2013

Published electronically:
October 22, 2014

Additional Notes:
This project is the result of participation in the 2013 Arizona Winter School.

Communicated by:
Ken Ono

Article copyright:
© Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.