Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Benedetto's trick and existence of rational preperiodic structures for quadratic polynomials


Author: Xander Faber
Journal: Proc. Amer. Math. Soc. 143 (2015), 685-694
MSC (2010): Primary 37P35; Secondary 37P05, 37P40
DOI: https://doi.org/10.1090/S0002-9939-2014-12328-8
Published electronically: September 19, 2014
MathSciNet review: 3283655
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We refine a result of R. Benedetto in $ p$-adic analysis in order to exhibit infinitely many quadratic polynomials over $ \mathbb{Q}$ with a specified graph of rational preperiodic points.


References [Enhancements On Off] (What's this?)

  • [1] Robert L. Benedetto, Heights and preperiodic points of polynomials over function fields, Int. Math. Res. Not. 62 (2005), 3855-3866. MR 2202175 (2006m:11095), https://doi.org/10.1155/IMRN.2005.3855
  • [2] Robert L. Benedetto, Preperiodic points of polynomials over global fields, J. Reine Angew. Math. 608 (2007), 123-153. MR 2339471 (2008j:11071), https://doi.org/10.1515/CRELLE.2007.055
  • [3] Gregory S. Call and Susan W. Goldstine, Canonical heights on projective space, J. Number Theory 63 (1997), no. 2, 211-243. MR 1443758 (98c:11060), https://doi.org/10.1006/jnth.1997.2099
  • [4] John R. Doyle, Xander Faber, and David Krumm, Preperiodic points for quadratic polynomials over quadratic fields, New York J. Math. 20 (2014), 507-605.
  • [5] E. V. Flynn, Bjorn Poonen, and Edward F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-$ 2$ curve, Duke Math. J. 90 (1997), no. 3, 435-463. MR 1480542 (98j:11048), https://doi.org/10.1215/S0012-7094-97-09011-6
  • [6] Benjamin Hutz and Patrick Ingram, On Poonen's conjecture concerning rational preperiodic points of quadratic maps, Rocky Mountain J. Math. 43 (2013), no. 1, 193-204. MR 3065461
  • [7] Patrick Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), no. 3, 319-350. MR 1414593 (97m:14030)
  • [8] Patrick Morton, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith. 87 (1998), no. 2, 89-102. MR 1665198 (2000c:11103)
  • [9] Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), 97-110. MR 1264933 (95b:11066), https://doi.org/10.1155/S1073792894000127
  • [10] Bjorn Poonen, The classification of rational preperiodic points of quadratic polynomials over $ {\bf Q}$: a refined conjecture, Math. Z. 228 (1998), no. 1, 11-29. MR 1617987 (99j:11076), https://doi.org/10.1007/PL00004405
  • [11] Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367-380. MR 2465796 (2010b:11067), https://doi.org/10.1112/S1461157000000644
  • [12] J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), no. 1, 1-50. MR 1513216
  • [13] Ralph Walde and Paula Russo, Rational periodic points of the quadratic function $ Q_c(x)=x^2+c$, Amer. Math. Monthly 101 (1994), no. 4, 318-331. MR 1270956 (95a:11025), https://doi.org/10.2307/2975624

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37P35, 37P05, 37P40

Retrieve articles in all journals with MSC (2010): 37P35, 37P05, 37P40


Additional Information

Xander Faber
Affiliation: Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822

DOI: https://doi.org/10.1090/S0002-9939-2014-12328-8
Received by editor(s): May 1, 2013
Published electronically: September 19, 2014
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society