Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A classification of some unit Lorentz balls as non-intersection bodies


Author: Patrick Spencer
Journal: Proc. Amer. Math. Soc. 143 (2015), 1211-1220
MSC (2010): Primary 52A20; Secondary 42A38, 42A82, 46F12
DOI: https://doi.org/10.1090/S0002-9939-2014-11821-1
Published electronically: November 4, 2014
MathSciNet review: 3293736
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the unit ball of the $ n$-dimensional Lorentz space $ \ell _{w,q}^n$ is not an intersection body for $ q>2$ and $ n\ge 5$.


References [Enhancements On Off] (What's this?)

  • [1] Keith Ball, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 224-231. MR 950983 (89h:52009), https://doi.org/10.1007/BFb0081743
  • [2] J. Bourgain, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal. 1 (1991), no. 1, 1-13. MR 1091609 (92c:52008), https://doi.org/10.1007/BF01895416
  • [3] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435-445. MR 1201126 (94e:52008), https://doi.org/10.2307/2154703
  • [4] Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221 (96j:52006)
  • [5] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435-447. MR 1298719 (95i:52005), https://doi.org/10.2307/2118606
  • [6] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691-703. MR 1689343 (2001b:52011), https://doi.org/10.2307/120978
  • [7] Apostolos A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), no. 2, 239-244. MR 1099772 (92c:52009), https://doi.org/10.1112/S002557930001295X
  • [8] P. Goodey, E. Lutwak, and W. Weil, Functional analytic characterizations of classes of convex bodies, Math. Z. 222 (1996), no. 3, 363-381. MR 1400197 (97i:52002), https://doi.org/10.1007/PL00004539
  • [9] Alexander Koldobsky, Intersection bodies in $ {R}^4$, Adv. Math. 136 (1998), no. 1, 1-14. MR 1623669 (99j:52013), https://doi.org/10.1006/aima.1998.1718
  • [10] Alexander Koldobsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math. 120 (1998), no. 4, 827-840. MR 1637955 (99i:52005)
  • [11] Alexander Koldobsky, Second derivative test for intersection bodies, Adv. Math. 136 (1998), no. 1, 15-25. MR 1623670 (99j:52014), https://doi.org/10.1006/aima.1998.1719
  • [12] Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704 (2006a:42007)
  • [13] D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), no. 2, 164-175. MR 0390914 (52 #11737)
  • [14] Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232-261. MR 963487 (90a:52023), https://doi.org/10.1016/0001-8708(88)90077-1
  • [15] Michael Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in $ \mathbf {R}^n$, Mathematika 39 (1992), no. 2, 258-266. MR 1203282 (94a:52019), https://doi.org/10.1112/S0025579300014996
  • [16] M. Yaskina, Non-intersection bodies, all of whose central sections are intersection bodies, Proc. Amer. Math. Soc. 135 (2007), no. 3, 851-860 (electronic). MR 2262882 (2007i:52007), https://doi.org/10.1090/S0002-9939-06-08530-3
  • [17] Gao Yong Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777-801. MR 1254193 (95d:52008), https://doi.org/10.2307/2154998
  • [18] Gao Yong Zhang, A positive solution to the Busemann-Petty problem in $ \mathbb{R}^4$, Ann. of Math. 149 (1999), 535-543. MR 1689339
  • [19] Gao Yong Zhang, Intersection bodies and the Busemann-Petty inequalities in $ {{\bf R}^4}$, journal=Ann. of Math. (2), volume=140, date=1994, number=2, pages=331-346, issn=0003-486X, review=MR 1298716 (95i:52004), doi=10.2307/2118603,.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A20, 42A38, 42A82, 46F12

Retrieve articles in all journals with MSC (2010): 52A20, 42A38, 42A82, 46F12


Additional Information

Patrick Spencer
Affiliation: Department of Mathematics, 202 Mathematical Sciences Building, University of Missouri, Columbia, Missouri 65211
Email: patrick.spencer@mail.mizzou.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11821-1
Keywords: Lorentz space, intersection bodies
Received by editor(s): December 2, 2011
Received by editor(s) in revised form: April 5, 2012, and April 17, 2012
Published electronically: November 4, 2014
Additional Notes: The author would like to thank Alexander Koldobsky for all his guidance and support throughout this paper.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society