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ON THE PROBABILITY OF PLANARITY

OF A RANDOM GRAPH NEAR THE CRITICAL POINT

MARC NOY, VLADY RAVELOMANANA, AND JUANJO RUÉ

(Communicated by David Levin)

We dedicate this paper to the memory of Philippe Flajolet

Abstract. Let G(n,M) be the uniform random graph with n vertices and M
edges. Erdős and Rényi (1960) conjectured that the limiting probability

lim
n→∞

Pr{G(n, n
2
) is planar}

exists and is a constant strictly between 0 and 1. �Luczak, Pittel and Wierman
(1994) proved this conjecture, and Janson, �Luczak, Knuth and Pittel (1993)
gave lower and upper bounds for this probability. In this paper we determine
the exact limiting probability of a random graph being planar near the critical
point M = n/2. For each λ, we find an exact analytic expression for

p(λ) = lim
n→∞

Pr
{
G

(
n, n

2
(1 + λn−1/3)

)
is planar

}
.

In particular, we obtain p(0) ≈ 0.99780. We extend these results to classes of
graphs closed under taking minors. As an example, we show that the prob-
ability of G(n, n

2
) being series-parallel converges to 0.98003. For the sake of

completeness and exposition we reprove in a concise way several basic proper-
ties we need of a random graph near the critical point.

1. Introduction

The random graph model G(n,M) assigns uniform probability to graphs on n
labelled vertices with M edges. A fundamental result of Erdős and Rényi [7] is that
the random graph G(n,M) undergoes an abrupt change when M is around n/2,
the value for which the average vertex degree is equal to one. When M = cn/2 and
c < 1, almost surely the connected components are all of order O(logn) and are
either trees or unicyclic graphs. When M = cn/2 and c > 1, almost surely there is
a unique giant component of size Θ(n). We direct the reader to the reference texts
[4] and [14] for a detailed discussion of these facts.

We concentrate on the so-called critical window M = n
2 (1 + λn−1/3), where λ

is a real number, identified by the work of Bollobás [2, 3]. Let us recall that the
excess of a connected graph is the number of edges minus the number of vertices.
A connected graph is complex if it has positive excess. As λ → −∞, complex
components disappear and only trees and unicyclic components survive, and as
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λ → +∞, components with unbounded excess appear. A thorough analysis of the
random graph in the critical window can be found in [13] and [16], which constitute
our basic references.

For each fixed λ, we denote the random graph G
(
n, n

2 (1 + λn−1/3)
)
by G(λ).

The core C(λ) of G(λ) is obtained by repeatedly removing all vertices of degree
one from G(λ). The kernel K(λ) is obtained from C(λ) by replacing all maximal
paths of vertices of degree two by single edges. The graph G(λ) satisfies almost
surely several fundamental properties that were established in [16] by a subtle
simultaneous analysis of the G(n,M) and the G(n, p) models.

(1) The number of complex components is bounded.
(2) Each complex component has size of order n2/3, and the largest suspended

tree in each complex component has size of order n2/3.
(3) C(λ) has size of order n1/3 and maximum degree three, and the distance

between two vertices of degree three in C(λ) is of order n1/3.
(4) K(λ) is a cubic (3-regular) multigraph of bounded size.

The key property for us is the last one. It implies that almost surely the components
of G(λ) are trees, unicyclic graphs, and those obtained from a cubic multigraph K
by attaching rooted trees to the vertices of K and by attaching ordered sequences
of rooted trees to the edges of K. Some care is needed here, since the resulting
graph may not be simple, but asymptotically this can be accounted for.

It is clear that G(λ) is planar if and only if the kernel K(λ) is planar. Then
by counting planar cubic multigraphs it is possible to estimate the probability that
G(λ) is planar. To this end we use generating functions. The trees attached to
K(λ) are encoded by the generating function T (z) of rooted trees, and complex
analytic methods are used to estimated the coefficients of the corresponding series.
This allows us to determine the exact probability

p(λ) = lim
n→∞

Pr
{
G
(
n, n2 (1 + λn−1/3)

)
is planar

}
.

In particular, we obtain p(0) ≈ 0.99780.
This approach was initiated in the seminal paper by Flajolet, Knuth and Pittel

[8], where the authors determined the threshold for the appearance of the first
cycles in G(n,M). A basic feature in [8] is to estimate coefficients of large powers
of generating functions using Cauchy integrals and the saddle-point method. This
path was followed by Janson, Knuth, �Luczak and Pittel [13], who obtained a wealth
of results on G(λ). Of particular importance for us is the determination in [13] of
the limiting probability that G(λ) has given excess. The approach by �Luczak, Pittel
and Wierman in [16] is more probabilistic and has as its starting point the classical
estimates by Wright [19] on the number of connected graphs with fixed excess.
The range of these estimates was extended by Bollobás [2], and more recently
the analysis was refined by Flajolet, Salvy and Schaeffer [9] by giving complete
asymptotic expansions in terms of the Airy function.

The paper is organized as follows. In Section 2 we present the basic lemmas
needed in the sequel. Except for the proof of Lemma 1, the paper is self-contained.
Lemmas 2 to 5 are proved in [13] with a different presentation; for the sake of com-
pleteness and exposition we provide shorter and hopefully more accessible proofs.
In Section 3 we compute the number of cubic planar multigraphs, suitably weighted,
where we follow [15]. In Section 4 we compute the exact probability that the random
graph G(λ) is planar as a function of λ. We generalize this result by determining
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the probability that G(λ) belongs to a minor-closed class of graphs in several cases
of interest.

We close this introduction with a remark. The problem of 2-satisfiability presents
a striking analogy with the random graph process. Given n Boolean variables and
a conjunctive formula of M clauses, each involving two literals, the problem is to
determine the probability that the formula is satisfiable when M grows with n. The
threshold has been established at M = n and the critical window is also of width
n2/3; see [5]. However, the exact probability of satisfiability when the number of
clauses is n(1+λn−1/3) has not been determined and appears to be a more difficult
problem.

2. Preliminaries

All graphs in this paper are labelled. The size of a graph is its number of vertices.
A multigraph is a graph with loops and multiple edges allowed.

We recall that the generating function T (z) of rooted trees satisfies

T (z) = zeT (z).

Using Lagrange’s inversion [10], one recovers the classical formula nn−1 for the
number of rooted labelled trees. The generating function for unrooted trees is

U(z) = T (z)− T (z)2

2
.

This can be proved by integrating the relation T (z) = zU ′(z) or more combinato-
rially by using the dissimilarity theorem for trees [17].

A graph is unicyclic if it is connected and has a unique cycle. Unicyclic graphs can
be seen as an undirected cycle of length at least three to which we attach a sequence
of rooted trees. Since the directed cycle construction corresponds algebraically to
log(1/(1− T (z)) (see [10]), the generating function is

V (z) =
1

2

(
log

1

1− T (z)
− T (z)− T (z)2

2

)
.

Graphs all of whose components are unicyclic are given by the exponential formula

eV (z) =
e−T (z)/2−T (z)2/4√

1− T (z)
.

The following result, which is fundamental for us, is proved in [16, Theorem 4] by
a careful analysis of the structure of complex components in G(λ). We say that a
property P holds asymptotically almost surely (a.a.s.) in G(n,M) if the probability
that P is satisfied tends to one as n → ∞. Recall thatG(λ) = G

(
n, n

2 (1 + λn−1/3)
)
.

Lemma 1. For each λ, the kernel of G(λ) is a.a.s. a cubic multigraph.

Given a cubic multigraph M with a loops, b double edges and c triple edges,
define its weight as

w(M) = 2−a2−b6−c.

This weight (called the compensation factor in [13]) has the following explanation.
When we substitute edges of the kernel by sequences of rooted trees, a loop has two
possible orientations that give rise to the same graph. A double (triple) edge can
be permuted in two (six) ways, again producing the same graph. From now on, all
multigraphs we consider are weighted so that we omit the qualifier. The following
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lemma is proved in [13] using a combination of guessing and recurrence relations.
The next proof is already contained in [4, Chap. 2].

Lemma 2. The number Er of cubic multigraphs with 2r vertices is equal to

Er =
(6r)!

(3r)!23r62r
.

Proof. A cubic multigraph can be modeled as a pairing of darts (half-edges), 3 for
each vertex, with a total of 6r darts. The number of such pairings is (6r)!/((3r)!23r).
However, we have to divide by the number 62r the ways of permuting each of the
2r triples of darts. The weight takes care of exactly the number of times a cubic
multigraph is produced in this process. �

The next result is essentially proved in [13] using several algebraic manipulations.
Here we present a concise proof. We denote by [zn]A(z) the coefficient of zn in the
power series A(z).

Lemma 3. The number g(n,M, r) of simple graphs with n vertices, M edges and
cubic kernel of size 2r satisfies

g(n,M, r) ≤ n! [zn]
U(z)n−M+r

(n−M + r)!
eV (z) Er

(2r)!

T (z)2r

(1− T (z))3r

and

g(n,M, r) ≥ n! [zn]
U(z)n−M+r

(n−M + r)!
eV (z) Er

(2r)!

T (z)8r

(1− T (z))3r
.

Proof. Such a graph is the union of a set of s unrooted trees, a set of unicyclic
graphs, and a cubic multigraph K with a rooted tree attached to each vertex of
K and a sequence (possibly empty) of rooted trees attached to each edge of K.
Let us see first that s = n−M + r. Indeed, the final excess of edges over vertices
must be M − n. Each tree component contributes with excess −1, each unicyclic
component with excess 0, and K (together with the attached trees) with excess r.
Hence M − n = −s+ r.

The first two factors U(z)n−M+r/(n − M + r)! and eV (z) on the right-hand
side of the inequalities encode the set of trees and unicyclic components. The
last part encodes the kernel K. It has 2r vertices and is labelled, hence the factor
Er/(2r)!; the weighting guarantees that each graph contributing towards g(n,M, r)
is counted exactly once. The trees attached to the 2r vertices give a factor T (z)2r.
The sequences of trees attached to the 3r edges give each a factor 1/(1 − T (z)).
However, this allows for the empty sequence and the resulting graph may not be
simple, so we get only an upper bound. To guarantee that the final graph is simple
we take sequences of length at least two, encoded by T (z)2/(1− T (z)) (length one
is enough for multiple edges of K, but length two is needed for loops). Since this
misses some graphs, we get a lower bound. �

The following technical result is essentially Lemma 3 from [13]. We reprove it
here for completeness in a simplified version tailored to our needs (see also the proof
of Theorem 5 in [8]).

Lemma 4. Let M = n
2 (1 + λn−1/3). Then for any integers a, r > 0 we have

(1)
n!((n2)
M

) [zn] U(z)n−M+r

(n−M + r)!

T (z)a

(1− T (z))3r
eV (z) =

√
2πA

(
3r + 1

2 , λ
)(

1 +O

(
1 + λ4

n1/3

))
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uniformly for |λ| ≤ n1/12, where

(2) A(y, λ) =
e−λ3/6

3(y+1)/3

∑
k≥0

(
1
23

2/3λ
)k

k! Γ
(
(y + 1− 2k)/3

) .
Proof. The proof is based on relating the left-hand side of (1) to the integral rep-
resentation of A(y, λ) defined in [13, Equation (10.7)]:

A(y, λ) =
1

2πi

∫
Π

s1−yeK(λ,s)ds,

where K(λ, s) is the polynomial

K(λ, s) =
(s+ λ)2(2s− λ)

6
=

s3

3
+

λs2

2
− λ3

6

and Π is a path in the complex plane that consists of the following three straight
line segments:

s(t) =

⎧⎨
⎩

−e−πi/3 t, for−∞ < t ≤ −2,
1 + it sin π/3, for− 2 ≤ t ≤ +2,

e+πi/3 t, for + 2 ≤ t < +∞.

The constant fact on the left-hand side of (1) is estimated using Stirling’s formula,
getting

(3)
n!((n2)
M

) 1

(n−M + r)!
=

√
2πn

2n−M+r

nr
e−λ3/6+3/4−n

(
1 +O

(
1 + λ4

n1/3

))
.

The coefficient of [zn] in (1) is estimated by means of a contour integral around
z = 0, using the expressions of U(z) and V (z) in terms of T (z):

1

2πi

∮ (
T (z)− T (z)2

2

)n−M+r
T (z)a e−T (z)/2−T (z)2/4

(1− T (z))3r+1/2

dz

zn+1
.

We make the change of variable u = T (z), whose inverse is z = ue−u, and we obtain

(4)
2M−n−ren

2πi

∮
g(u) enh(u)

du

u
,

where the integrand is split into a smooth function

g(u) =
ua(2u− u2)re−u/2−u2/4

(1− u)3r−1/2

and a large power involving

h(u) = u− 1− log u−
(
1− M

n

)
log

1

1− (u− 1)2
.

The contour path in (4) should be such that |u| < 1. As remarked in [13] (see
also [8]), the function h(u) satisfies h(1) = h′(1) = 0. Moreover, precisely at the
critical value M = n/2 we also have h′′(1) = 0. This triple zero shows up in the
procedure used in [13] when estimating (4) for large n by means of the saddle-point
method. Notice that h(u) is singular at u = 1, due to the singularity at z = e−1 of
T (z).

Let ν = n−1/3, and let α be the positive solution to

λ = α−1 − α.
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This choice is necessary in order to get precise bounds for the tail estimates that
appear using the saddle-point method. Following the proof of [13, Lemma 3], we
evaluate (4) on the path u = e−(α−it)ν , where t runs from −πn1/3 to πn1/3. That
is, ∮

f(u)
du

u
= iν

∫ πn1/3

−πn1/3

f(e−(α−it)ν) dt.

The main contribution to the value of this integral comes from the vicinity of
t = 0. The magnitude of eh(u) depends on the real part �h(u). Observe that
�h(e−(α−it)ν) decreases as |t| increases and that |enh(u)| has its maximum on the
circle u = e−(α−it)ν when t = 0. We write s = α− it. Analyzing nh(e−sν), we have

nh(e−sν) =
s3

3
+

λs2

2
+O

(
(λ2s2 + s4)ν

)
,

uniformly in any region such that |sν| < log 2. For the function g(u), we have

g
(
e−sν

)
=

(
2e−sν − e−2sν

)r
(1− e−sν)3r−1/2

e−sνa−e−sν/2−e−2sν/4 = (sν)1/2−3re−3/4 (1 +O(sν)) .

If f(u) = g(u)enh(u) is the integrand of (4), we have

e−λ3/6f(e−sν) = e−3/4ν1/2−3rs1−(3r+1/2)eK(λ,s)
(
1 +O(sν) +O(λ2s2ν) +O(s4ν)

)
when s = O(n1/12). Finally,

e−λ3/6

2πi

∮
f(u)

du

u
= e−3/4ν3/2−3rA(3r+ 1

2 , λ)+O
(
ν5/2−3r(1 + λ1/4)A(3r + 1

2 , λ)
)
,

where the error term has been derived from those already in [13]. The proof of the
lemma is completed by multiplying (3) and (4), and canceling equal terms. �

It is important to note that in the previous lemma the final asymptotic estimate
does not depend on the choice of a. The next result is a direct consequence and
can be found as Formula (13.17) in [13].

Lemma 5. The limiting probability that the random graph G(λ) has a cubic kernel
of size 2r is equal to √

2π erA(3r + 1
2 , λ),

where er = Er/(2r)! and A(y, λ) is as in the previous lemma.
In particular, for λ = 0 the limiting probability is√

2

3

(
4

3

)r

er
r!

(2r)!
.

Proof. Using the notation of Lemma 3, the probability for a given n is by definition

g(n,M, r)((n2)
M

) .

Lemma 3 gives upper and lower bounds for this probability, and using Lemma 4
we see that both bounds agree in the limit and are equal to

Er

(2r)!

√
2πA(3r + 1

2 , λ),



ON THE PROBABILITY OF PLANARITY OF A RANDOM GRAPH 931

thus proving the result. A key point is that the discrepancy between the factors
T (z)2r and T (z)8r in the bounds for g(n,M, r) does not affect the limiting value of
the probability. �

Notice that if we replace er by the numbers gr arising by counting planar cubic
multigraphs, we immediately obtain the probability that G(λ) has a cubic planar
kernel of size 2r. Since G(λ) is planar if and only if its kernel is planar, we can
use this fact to compute the probability of G(λ) being planar. But first we must
compute gr.

3. Planar cubic multigraphs

In this section we compute the numbers Gr of cubic planar multigraphs of size
2r. The associated generating function has been obtained recently by Kang and
�Luczak [15] (generalizing the enumeration of simple cubic graphs in [1]), but their
derivation contains some minor errors. They do not affect the correctness of [15],
since the asymptotic estimates needed by the authors are still valid. However, for
the computations that follow we need the exact values. The next result is from
[15], with the corrections mentioned below. All multigraphs are weighted as in the
previous section.

Lemma 6. Let G1(z) be the generating function of connected cubic planar multi-
graphs. Then G1(z) is determined by the following system of equations:

3z
dG1(z)

dz
= D(z) + C(z),

B(z) =
z2

2
(D(z) + C(z)) +

z2

2
,

C(z) = S(z) + P (z) +H(z) +B(z),

D(z) =
B(z)2

z2
,

S(z) = C(z)2 − C(z)S(z),

P (z) = z2C(z) +
1

2
z2C(z)2 +

z2

2
,

2(1 + C(z))H(z) = u(z)(1− 2u(z))− u(z)(1− u(z))3,

z2(C(z) + 1)3 = u(z)(1− u(z))3.

The generating functions B(z), C(z), D(z), S(z), P (z) and H(z) correspond to
distinct families of edge-rooted cubic planar graphs, and u(z) is an algebraic func-
tion related to the enumeration of 3-connected cubic planar graphs (dually, 3-
connected triangulations).

The corrections with respect to [15] are the following. In the first equation a term
−7z2/24 has been removed. In the second and sixth equations we have replaced a
term z2/4 by z2/2. In the fourth equation we have removed a term −z2/16. For the
combinatorial interpretation of the various generating functions and the proof of the
former equations we refer to [15]. Notice that by eliminating u(z) from the last two
equations we obtain a relation between C(z) and H(z). This relation can be used
to obtain a single equation satisfied by C(z), eliminating the remaining equations.
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We reproduce it here in case the reader wishes to check our computations:

1048576 z6 + 1034496 z4 − 55296 z2

+
(
9437184 z6 + 6731264 z4 − 1677312 z2 + 55296

)
C

+
(
37748736 z6 + 18925312 z4 − 7913472 z2 + 470016

)
C2

+
(
88080384 z6 + 30127104 z4 − 16687104 z2 + 1622016

)
C3

+
(
132120576 z6 + 29935360 z4 − 19138560 z2 + 2928640

)
C4

+
(
132120576 z6 + 19314176 z4 − 12429312 z2 + 2981888

)
C5

+
(
88080384 z6 + 8112384 z4 − 4300800 z2 + 1720320

)
C6

+
(
37748736 z6 + 2097152 z4 − 614400 z2 + 524288

)
C7

+
(
9437184 z6 + 262144 z4 + 65536

)
C8 + 1048576C9z6 = 0.

The first terms are

C(z) = z2 +
25

8
z4 +

59

4
z6 +

11339

128
z8 + · · · .

This allows us to compute B(z), D(z), S(z), P (z) and H(z), hence also G1(z). The
first coefficients of G1(z) are as follows:

G1(z) =
5

24
z2 +

5

16
z4 +

121

128
z6 +

1591

384
z8 + · · · .

Using the set construction, the generating function G(z) for cubic planar multi-
graphs is then
(5)

G(z) = eG1(z) =

∞∑
r=0

Gr
z2r

(2r)!
= 1+

5

24
z2 +

385

1152
z4 +

83933

82944
z6 +

35002561

7962624
z8 + · · · ,

where Gr is the number of planar cubic multigraphs with 2r vertices. This coincides
with the generating function for all cubic (non-necessarily planar) multigraphs up to
the coefficient of z4. The first discrepancy is in the coefficient of z6. The difference
between the coefficients is 1/72 = 10/6!, corresponding to the 10 possible ways of
labelling K3,3, the unique non-planar cubic multigraph on six vertices.

4. Probability of planarity and generalizations

Let G be a graph with a cubic kernel K. Then clearly G is planar if and only if K
is planar, and we can compute the probability that G(n,M) is planar by counting
over all possible planar kernels.

Theorem 7. Let gr(2r)! be the number of cubic planar multigraphs with 2r vertices.
Then the limiting probability that the random graph G(n,M = n

2 (1 + λn−1/3)) is
planar is

p(λ) =
∑
r≥0

√
2π grA(3r + 1

2 , λ).

In particular, the limiting probability that G(n, n2 ) is planar is

p(0) =
∑
r≥0

√
2

3

(
4

3

)r

gr
r!

(2r)!
≈ 0.99780.

Proof. The same analysis as in Section 2 shows that
√
2π grA(3r + 1

2 , λ) is the
probability that the kernel is planar and has 2r vertices. Summing over all possible
r, we get the desired result. �
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As already mentioned, Erdős and Rényi [7] conjectured that p(0) exists and
0 < p(0) < 1. This was proved in [16], showing that p(λ) exists for all λ and that
0 < p(λ) < 1. The bounds in [13] for p(0) are

0.98707 < p(0) < 0.99977,

obtained by considering connected cubic multigraphs with at most six vertices.
We remark that Stepanov [18] showed that p(λ) < 1 for λ ≤ 0 (without actually
establishing the existence of the limiting probability). The function p(λ) is plotted
in Figure 1. As expected, p(λ) is close to 1 when λ → −∞ and close to 0 when
λ → ∞. For instance, p(−3) ≈ 1− 1.02 · 10−7 and p(5) ≈ 4.9 · 10−7.

Besides planar graphs, one can consider other classes of graphs. Let G be a
class of graphs closed under taking minors, that is, if H is a minor of G and
G ∈ G, then H ∈ G. If H1, · · · , Hk are the excluded minors of G, then we write
G = Ex(H1, . . . , Hk). (By the celebrated theorem of Robertson and Seymour, the
number of excluded minors is finite, but we do not need this deep result here.)

The following result generalizes the previous theorem and holds for families de-
fined by minor conditions:

Theorem 8. Let G be a family of graphs defined by a set (possibly infinite) of
3-connected excluded minors. Let hr(2r)! be the number of cubic multigraphs in G
with 2r vertices. Then the limiting probability that the random graph
G(n,M = n

2 (1 + λn−1/3)) is in G is

pG(λ) =
∑
r≥0

√
2π hrA(3r + 1

2 , λ).

In particular, the limiting probability that G(n, n2 ) is in G is

pG(0) =
∑
r≥0

√
2

3

(
4

3

)r

hr
r!

(2r)!
.

Moreover, for each λ we have

0 < pG(λ) < 1.

Proof. If all the excluded minors are 3-connected, then clearly a graph is in G if and
only its kernel is in G. The probability pG(λ) is then computed as in Theorem 7.
It is positive since G contains all trees and unicyclic graphs, which contribute with
positive probability (although tending to 0 as λ → ∞). To prove that it is less than
1, let t be the size of the smallest excluded minor. By splitting vertices it is easy
to construct cubic graphs containing Kt as a minor, hence G(λ) contains Kt as a
minor with positive probability (alternatively, see the argument at the end of [16]).
It follows that 1− pG(λ) > 0. �

In some cases of interest we are able to compute the numbers hr explicitly. Let
G = Ex(K4) be the class of series-parallel graphs. The same system of equations as
in Lemma 6 holds for series-parallel graphs with the difference that now H(z) = 0
(there are no 3-connected series-parallel graphs). The generating function for cubic
series-parallel multigraphs can be computed as

Gsp(z) = 1 +
5

24
z2 +

337

1152
z4 +

55565

82944
z6 +

15517345

7962624
z8 + · · · .
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Figure 1. The probability of G(λ) being planar and being series-
parallel are both plotted for λ ∈ [−1 . . . 4]. The function on top
corresponds to the planar case.

For instance, [z4](G(z) − Gsp(z)) = 1
24 , corresponding to the fact that K4 is the

only cubic multigraph with 4 vertices which is not series-parallel. The limiting
probability that G(n, n2 ) is series-parallel is

p sp(0) ≈ 0.98003.

See Figure 1 for a plot of p sp(λ).
The class Ex(K4,K2,3) of outerplanar graphs does not fall directly under this

scheme, sinceK2,3 is not 3-connected, but by adapting the equations in Lemma 6 (in
particular the parallel decomposition encoded by P (z)) it is possible to enumerate
exactly cubic outerplanar multigraphs. The first terms in the generating function
are

Gout(z) = 1 +
5

24
z2 +

337

1152
z4 +

55565

82944
z6 +

14853793

7962624
z8 + · · · .

The first discrepancy with Gsp(z) is at z8, corresponding to the graph K2,3 with
either a loop or a double edge attached at the vertices of degree two. The probability
of being outerplanar is

p out(0) ≈ 0.97979.

We do not plot p out(λ) in Figure 1 since it is too close to p sp(λ) to see a clear
distinction.

As another example, consider excluding K3,3. Since the only 3-connected non-
planar graph in Ex(K3,3) is K5, which is not cubic, the limiting probability of
being in this class is exactly the same as of being planar, although Ex(K3,3) is
exponentially larger than the class of planar graphs [11]. But excluding the graph
K+

3,3, obtained by adding one edge to K3,3, does increase the probability, since K3,3

is in the class and is cubic and non-planar (the probability is computable since the
3-connected graphs in Ex(K+

3,3) are known [11]). Other classes such as Ex(K5 − e)

or Ex(K3 ×K2) can be analyzed too using the results from [12].
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It would be interesting to compute the probability that G(λ) has genus g. For
this we need to count cubic multigraphs of genus g (orientable or not). We only
know how to do this for g = 0, the reason being that a 3-connected planar graph
has a unique embedding in the sphere. This is not at all true in positive genus.
It is true though that almost all 3-connected graphs of genus g have a unique
embedding in the surface of genus g (see [6]). This could be the starting point for
the enumeration, by first counting 3-connected maps of genus g (a map is a graph
equipped with a 2-cell embedding). But this is not enough here, since we need the
exact numbers of graphs.
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