Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The failure of analyticity of Hausdorff dimensions of quasi-circles of Fuchsian groups of the second kind


Authors: Shengjin Huo and Shengjian Wu
Journal: Proc. Amer. Math. Soc. 143 (2015), 1101-1108
MSC (2010): Primary 30C62, 30F35, 30F60
DOI: https://doi.org/10.1090/S0002-9939-2014-12205-2
Published electronically: November 4, 2014
MathSciNet review: 3293725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma $ be a Fuchsian group. Any $ [\mu ]$ in the Teichmüller space $ T(\Gamma )$ determines a quasi-circle $ f_{\mu }(\partial \mathbb{D}).$ In this paper, we prove that, for any Fuchsian group $ \Gamma $ of the second kind, the Hausdorff dimension $ \delta ([\mu ])=dim f_{\mu }(\partial \mathbb{D})$ is not a real analytic function in $ T(\Gamma )$.


References [Enhancements On Off] (What's this?)

  • [1] Stephen Agard, A geometric proof of Mostow's rigidity theorem for groups of divergence type, Acta Math. 151 (1983), no. 3-4, 231-252. MR 723011 (86b:22017), https://doi.org/10.1007/BF02393208
  • [2] Kari Astala and Michel Zinsmeister, Mostow rigidity and Fuchsian groups, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 301-306 (English, with French summary). MR 1071631 (92c:30021)
  • [3] Kari Astala and Michel Zinsmeister, Teichmüller spaces and BMOA, Math. Ann. 289 (1991), no. 4, 613-625. MR 1103039 (92k:30031), https://doi.org/10.1007/BF01446592
  • [4] K. Astala and M. Zinsmeister, Holomorphic families of quasi-Fuchsian groups, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 207-212. MR 1279468 (95k:30095), https://doi.org/10.1017/S0143385700007847
  • [5] Christopher J. Bishop, A criterion for the failure of Ruelle's property, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1733-1748. MR 2279263 (2008j:37097), https://doi.org/10.1017/S014338570600071X
  • [6] Guizhen Cui and Michel Zinsmeister, BMO-Teichmüller spaces, Illinois J. Math. 48 (2004), no. 4, 1223-1233. MR 2114154 (2005h:30038)
  • [7] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981. MR 628971 (83g:30037)
  • [8] Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407 (88f:30073)
  • [9] Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291 (89f:32040)
  • [10] Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591-602 (German). MR 0454017 (56 #12268)
  • [11] Ch. Pommerenke, Polymorphic functions for groups of divergence type, Math. Ann. 258 (1981/82), no. 4, 353-366. MR 650942 (83c:30048), https://doi.org/10.1007/BF01453971
  • [12] David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982), no. 1, 99-107. MR 684247 (84f:58095)
  • [13] Michel Zinsmeister, Les domaines de Carleson, Michigan Math. J. 36 (1989), no. 2, 213-220 (French). MR 1000525 (90i:30054), https://doi.org/10.1307/mmj/1029003944

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C62, 30F35, 30F60

Retrieve articles in all journals with MSC (2010): 30C62, 30F35, 30F60


Additional Information

Shengjin Huo
Affiliation: LMAM and School of Mathematical Sciences, Peking University, Beijing, 100871, People’s Republic of China
Address at time of publication: Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, People’s Republic of China
Email: sjhuo@pku.edu.cn

Shengjian Wu
Affiliation: LMAM and School of Mathematical Sciences, Peking University, Beijing, 100871, People’s Republic of China
Email: wusj@math.pku.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2014-12205-2
Keywords: Fuchsian group, Carleson measure, Hausdorff dimension, Teichm\"uller space
Received by editor(s): April 20, 2012
Received by editor(s) in revised form: March 11, 2013, and March 13, 2013
Published electronically: November 4, 2014
Additional Notes: The authors were supported by the National Natural Science Foundation of China (Grant No. 11371035 and Grant No. 11401432)
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society