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INDECOMPOSABLE MODULES FOR THE DUAL IMMACULATE

BASIS OF QUASI-SYMMETRIC FUNCTIONS

CHRIS BERG, NANTEL BERGERON, FRANCO SALIOLA, LUIS SERRANO,
AND MIKE ZABROCKI

(Communicated by Jim Haglund)

Abstract. We construct indecomposable modules for the 0-Hecke algebra
whose characteristics are the dual immaculate basis of the quasi-symmetric
functions.

1. Introduction

The algebra of symmetric functions Sym has an important basis formed by Schur
functions, which appear throughout mathematics. For example, they appear as the
representatives for the Schubert classes in the cohomology of the Grassmannian, as
the characters for the irreducible representations of the symmetric group and the
general linear group, or as an orthonormal basis for the space of symmetric func-
tions, to name a few. The algebra NSym of non-commutative symmetric functions
projects under the forgetful map onto Sym, which injects into the algebra QSym of
quasi-symmetric functions. NSym and QSym are dual Hopf algebras.

In [BBSSZ], the authors developed a basis for NSym, which satisfied many of
the combinatorial properties of Schur functions. This basis, called the immaculate
basis {Sα}, projects onto Schur functions under the forgetful map. When indexed
by a partition, the corresponding projection of the immaculate function is precisely
the Schur function of the given partition.

The dual basis {S∗
α} is a basis for QSym. The main goal of this paper is to

express the dual immaculate functions as characters of some representations, in the
same way that Schur functions are the characters of the irreducible representations
of the symmetric group. We achieve this in Theorem 3.5, where we realize them as
the characteristic of certain indecomposable representations of the 0-Hecke algebra.

2. Prerequisites

2.1. The symmetric group. The symmetric group Sn is the group generated by
the set of {s1, s2, . . . , sn−1} satisfying the following relations:

s2i = 1;

sisi+1si = si+1sisi+1;

sisj = sjsi if |i− j| > 1.

Received by the editors May 21, 2014 and, in revised form, July 3, 2013.
2010 Mathematics Subject Classification. Primary 05E05, 05E10, 20C08; Secondary 14N15,

20C30.

c©2014 American Mathematical Society
Reverts to public domain 28 years from publication

991

http://www.ams.org/proc/
http://www.ams.org/proc/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2014-12298-2


992 C. BERG, N. BERGERON, F. SALIOLA, L. SERRANO, AND M. ZABROCKI

2.2. Compositions and combinatorics. A partition of a non-negative integer n
is a tuple λ = [λ1, λ2, . . . , λm] of positive integers satisfying λ1 ≥ λ2 ≥ · · · ≥ λm

which sum to n. If λ is a partition of n, one writes λ � n. (When needed, we will
consider partitions with zeroes at the end, but they are equivalent to the underlying
partition made of positive numbers.) Partitions are of particular importance in
algebraic combinatorics, as they index a basis for the symmetric functions of degree
n, Symn, and the character ring for the representations of the symmetric group Sn,
among others. These concepts are intimately connected; we assume the reader is
well versed in this area (see for instance [Sagan] for background details).

A composition of a non-negative integer n is a tuple α = [α1, α2, . . . , αm] of
positive integers which sum to n. If α is a composition of n, one writes α |= n.
The entries αi of the composition are referred to as the parts of the composition.
The size of the composition is the sum of the parts and will be denoted |α|. The
length of the composition is the number of parts and will be denoted �(α). Note
that |α| = n and �(α) = m.

Compositions of n are in bijection with subsets of {1, 2, . . . , n − 1}. We will
follow the convention of identifying α = [α1, α2, . . . , αm] with the subset S(α) =
{α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αm−1}.

If α and β are both compositions of n, we say that α ≤ β in refinement order if
S(β) ⊆ S(α). For instance, [1, 1, 2, 1, 3, 2, 1, 4, 2] ≤ [4, 4, 2, 7], since
S([1, 1, 2, 1, 3, 2, 1, 4, 2]) = {1, 2, 4, 5, 8, 10, 11, 15} and S([4, 4, 2, 7]) = {4, 8, 10}.

In this presentation, compositions will be represented as diagrams of left adjusted
rows of cells. We will also use the matrix convention (‘English’ notation) that the
first row of the diagram is at the top and the last row is at the bottom. For example,
the composition [4, 1, 3, 1, 6, 2] is represented as

.

2.3. Symmetric functions. We let Sym denote the ring of symmetric functions.
As an algebra, Sym is the ring over Q freely generated by commutative elements
{h1, h2, . . . }. Sym has a grading, defined by giving hi degree i and extending mul-
tiplicatively. A natural basis for the degree n component of Sym are the complete
homogeneous symmetric functions of degree n, {hλ := hλ1

hλ2
· · ·hλm

: λ � n}. It is
common and advantageous to identify Sym with a subring of the ring of power series
of bounded degree Q[[x1, x2, . . . ]] in commuting variables {x1, x2, . . . }; it consists of
the elements that are invariant under any permutation of the variables. Under this
identification, hi corresponds to the sum of all monomials of degree i.

2.4. Non-commutative symmetric functions. NSym is a non-commutative
analogue of Sym, the algebra of symmetric functions, that arises by considering
an algebra with one non-commutative generator at each positive degree. In ad-
dition to the relationship with the symmetric functions, this algebra has links to
Solomon’s descent algebra in type A [MR], the algebra of quasi-symmetric functions
[MR], and representation theory of the type A Hecke algebra at q = 0 [KT]. It is
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an example of a combinatorial Hopf algebra [ABS]. While we will follow the foun-
dational results and definitions from references such as [GKLLRT,MR], we have
chosen to use notation here which is suggestive of analogous results in Sym.

We consider NSym as the algebra with generators {H1, H2, . . . } and no relations.
Each generatorHi is defined to be of degree i, giving NSym the structure of a graded
algebra. We let NSymn denote the graded component of NSym of degree n. A basis
for NSymn are the complete homogeneous functions {Hα := Hα1

Hα2
· · ·Hαm

}α�n
indexed by compositions of n.

2.5. Immaculate tableaux.

Definition 2.1. Let α and β be compositions. An immaculate tableau of shape α
and content β is a labelling of the boxes of the diagram of α by positive integers in
such a way that:

(1) the number of boxes labelled by i is βi;
(2) the sequence of entries in each row, from left to right, is weakly increasing;
(3) the sequence of entries in the first column, from top to bottom, is increasing.

An immaculate tableau is said to be standard if it has content 1|α|.
Let Kα,β denote the number of immaculate tableaux of shape α and content β.

We reiterate that aside from the first column, there is no relation on the other
columns of an immaculate tableau.

Example 2.2. The five immaculate tableaux of shape [4, 2, 3] and content [3, 1, 2, 3]:

1 1 1 3

2 3

4 4 4

1 1 1 3

2 4

3 4 4

1 1 1 4

2 3

3 4 4

1 1 1 4

2 4

3 3 4

1 1 1 2

3 3

4 4 4

Definition 2.3. We say that a standard immaculate tableau T has a descent in
position i if i + 1 is in a row strictly below the row containing i. The descent
composition, denoted D(T ), is the composition corresponding to the set of descents
in T .

Example 2.4. The standard immaculate tableau of shape [6, 5, 7] :

T =

1 2 4 5 10 11

3 6 7 8 9

12 13 14 15 16 17 18

has descents in positions {2, 5, 11}. The descent composition of T is then D(T ) =
[2, 3, 6, 7].

2.6. The immaculate basis of NSym. The immaculate basis of NSym was in-
troduced in [BBSSZ]. It shares many properties with the Schur basis of Sym. We
define1 the immaculate basis {Sα}α as the unique elements of NSym satisfying:

Hβ =
∑
α

Kα,βSα.

Example 2.5. Continuing from Example 2.2, we see that

H3123 = · · ·+ 5S423 + · · · .
1This is not the original definition, but is equivalent by Proposition 3.16 in [BBSSZ].
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We will not attempt to summarize everything that is known about this basis,
but instead refer the reader to [BBSSZ] and [BBSSZ2].

3. Modules for the dual immaculate basis

In this section we will construct indecomposable modules for the 0-Hecke algebra
whose characteristic is a dual immaculate quasi-symmetric function.

3.1. Quasi-symmetric functions. The algebra of quasi-symmetric functions,
QSym, was introduced in [Ges] (see also subsequent references such as [GR,Sta84]).
The graded component QSymn is indexed by compositions of n. The algebra is
most readily realized as a subalgebra of the ring of power series of bounded degree
Q[[x1, x2, . . . ]], and the monomial quasi-symmetric function indexed by a composi-
tion α is defined as

(3.1) Mα =
∑

i1<i2<···<im

xα1
i1
xα2
i2

· · ·xαm
im

.

The algebra of quasi-symmetric functions, QSym, can be defined as the linear span
of the monomial quasi-symmetric functions. These, in fact, form a basis of QSym,
and their multiplication is inherited from Q[[x1, x2, . . . ]]. We view Sym as a subal-
gebra of QSym. In fact, the quasi-symmetric monomial functions refine the usual
monomial symmetric functions mλ ∈ Sym:

mλ =
∑

sort(α)=λ

Mα,

where sort(α) denotes the partition obtained by organizing the parts of α from the
largest to the smallest.

The fundamental quasi-symmetric function, denoted Fα, is defined by its expan-
sion in the monomial quasi-symmetric basis:

Fα =
∑
β≤α

Mβ .

The algebras QSym and NSym form dual graded Hopf algebras. In this context,
the monomial basis of QSym is dual to the complete homogeneous basis of NSym.
Duality can be expressed by the means of an inner product, for which 〈Hα,Mβ〉 =
δα,β .

In [BBSSZ], we studied the dual basis to the immaculate functions of NSym,
denoted S∗

β and indexed by compositions. They are the basis of QSym defined by

〈Sα,S
∗
β〉 = δα,β . In [BBSSZ, Proposition 3.37], we showed that the dual immacu-

late functions have the following positive expansion into the fundamental basis:

Proposition 3.1. The dual immaculate functions S∗
α are fundamental positive.

Specifically they expand as

S∗
α =

∑
T

FD(T ),

a sum over all standard immaculate tableaux of shape α.



INDECOMPOSABLE MODULES FOR THE DUAL IMMACULATE BASIS 995

3.2. Finite dimensional representation theory of Hn(0). We will outline the
study of the finite dimensional representations of the 0-Hecke algebra and its rela-
tionship to QSym. We begin by defining the 0-Hecke algebra. We refer the reader
to [Th2, Section 5] for the relationship between the generic Hecke algebra and the
0-Hecke algebra and their connections to representation theory.

Definition 3.2. Let K be any field. The Hecke algebra Hn(0) is the K–algebra
generated by the elements π1, π2, . . . πn−1 subject to relations:

π2
i = πi;

πiπi+1πi = πi+1πiπi+1;

πiπj = πjπi if |i− j| > 1.

A basis ofHn(0) is given by the elements {πσ : σ ∈ Sn}, where πσ = πi1πi2 · · ·πim

if σ = si1si2 · · · sim .
We let G0(Hn(0)) denote the Grothendieck group of finite dimensional rep-

resentations of Hn(0). As a vector space, G0(Hn(0)) is spanned by the finite
dimensional representations of Hn(0), with the relation on isomorphism classes
[B] = [A] + [C] whenever there is a short exact sequence of Hn(0)-representations
0 → A → B → C → 0. We let

G =
⊕
n≥0

G0(Hn(0)).

The irreducible representations of Hn(0) are indexed by compositions of n. The
irreducible representation corresponding to the composition α is denoted Lα. The
collection {[Lα]} forms a basis for G. As shown in Norton [N], each irreducible
representation is one dimensional, spanned by a non-zero vector vα ∈ Lα, and is
determined by the action of the generators on vα:

(3.2) πivα =

{
0 if i ∈ S(α);
vα otherwise,

where S(α) denotes the subset of [1 . . . n − 1] corresponding to the composition
α. The tensor product Hn(0) ⊗ Hm(0) is naturally embedded as a subalgebra of
Hn+m(0). Under this identification, one can endow G with a ring structure; for
[N ] ∈ G0(Hn(0)) and [M ] ∈ G0(Hm(0)), let

[N ][M ] := [Ind
Hn+m(0)
Hn(0)⊗Hm(0)N ⊗M ]

where induction is defined in the usual manner.
There is an important linear map F : G → QSym defined by F([Lα]) = Fα. For

a module M , F([M ]) is called the characteristic of M .

Theorem 3.3 (Duchamp, Krob, Leclerc, Thibon [DKLT]). The quasi-symmetric
functions and the Grothendieck group of finite dimensional representations of Hn(0)
are isomorphic as rings. The map F is an isomorphism between G and QSym.

Remark 3.4. The map F is actually an isomorphism of graded Hopf algebras. We
will not make use of the coalgebra structure.
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3.3. A representation on Y-words. We start by defining the analogue of a
permutation module for Hn(0). For a composition α = [α1, α2, . . . , αm] |= n,
we let Mα denote the vector space spanned by words of length n on the letters
{1, 2, . . . ,m} with content α (so that j appears αj times in each word). The action
of Hn(0) on a word w = w1w2 · · ·wn is defined on generators as:

(3.3) πiw =

{
w if wi ≥ wi+1;

si(w) if wi < wi+1;

where si(w) = w1w2 · · ·wi+1wi · · ·wn. This is isomorphic to the representation:

Ind
Hn(0)
Hα(0) (Lα1

⊗ Lα2
⊗ · · · ⊗ Lαm

) ,

where Lk is the one-dimensional representation indexed by the composition [k] and
Hα(0) := Hα1

(0) ⊗ Hα2
(0) ⊗ · · · ⊗ Hαm

(0). This can be seen by associating the
element πv ⊗Hα(0) Lα1

⊗ Lα2
⊗ · · · ⊗ Lαm

where v is the minimal length left coset
representative of Sn/Sα1

× Sα2
× · · · × Sαm

with the element πv(1
α12α2 · · · kαk).

We call a word a Y-word if the first instance of j appears before the first instance
of j + 1 for every j. We let Nα denote the subspace of Mα spanned by all words
that are not Y-words. The action of Hn(0) on Mα will never move a j + 1 to the
right of a j. This implies that Nα is a submodule of Mα. The object of our interest
is the quotient module Vα := Mα/Nα. We now state our main result.

Theorem 3.5. The characteristic of Vα is the dual immaculate function indexed
by α, i.e. F([Vα]) = S∗

α.

Before we prove this we will associate words to standard immaculate tableaux
and give an equivalent description of the 0-Hecke algebra on standard immaculate
tableau. To a Y-word w, we associate the unique standard immaculate tableau
T (w) which has a j in row wj .

Example 3.6. Let w = 112322231 be the Y-word of content [3, 4, 2]. Then T (w)
is the standard immaculate tableau:

1 2 9

3 5 6 7

4 8

Remark 3.7. T yields a bijection between standard immaculate tableaux and Y-
words.

Remark 3.8. In the case of the symmetric group, the irreducible module corre-
sponding to the partition λ has a basis indexed by standard tableaux. Under the
same map T , standard Young tableaux are in bijection with Yamanouchi words
(words for which every prefix contains at least as many j as j + 1 for every j). In
this sense, Y-words are a natural analogue to Yamanouchi words in our setting.
The Specht modules that give rise to the irreducible modules of the symmetric
group are built as quotients of Mλ. Under the Frobenius map, these modules are
sent to Schur functions if the field has characteristic 0.
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We may now describe the action of Hn(0) on Vα, identifying the set of standard
immaculate tableaux as the basis. Specifically, for a tableau T and a generator πi,
we let:

(3.4) πi(T ) =

⎧⎪⎨
⎪⎩
0 if i and i+1 are in the first column of T ,

T if i is in a row weakly below the row containing i+1,

si(T ) otherwise;

where si(T ) is the tableau that differs from T by swapping the letters i and i+ 1.

Example 3.9. Continuing from Example 3.6, we see that π1, π4, π5, π6, π8 send T
to itself, π3 sends T to 0 and π2, π7 send T to the following tableaux:

π2(T ) =

1 3 9

2 5 6 7

4 8

π7(T ) =

1 2 9

3 5 6 8

4 7

An example of the full action of πi on tableaux representing the basis elements
of the module V(2,2,3) is given in Figure 1. If we order the tableaux so that S ≺ T
if there exists a permutation σ such that πσ(T ) = S, then this figure shows that
order is not a total order on tableaux but that it can be extended to a total order
arbitrarily. We will use this total order in the following proof of Theorem 3.5.

We are now ready to prove Theorem 3.5, which states that the characteristic of
Vα is S∗

α.

Proof of Theorem 3.5. We construct a filtration of the module Vα whose successive
quotients are irreducible representations. Now, define MT to be the linear span
of all standard immaculate tableaux that are less than or equal to T . From the
definition of the order and the fact that the πi are not invertible, we see that MT is
a module. Ordering the standard immaculate tableaux of shape α as T1, T2, . . . , Tm,
then we have a filtration of Vα:

0 ⊂ MT1
⊂ MT2

⊂ · · · ⊂ MTm
= Vα.

The successive quotient modules MTj
/MTj−1

are one dimensional, spanned by
Tj ; to determine which irreducible this is, it suffices to compute the action of the
generators. From the description of Vα above, we see that

(3.5) πi(Tj) =

{
0 if i ∈ S(D(Tj)),

Tj otherwise.

This is the representation [LD(Tj)], whose characteristic is FD(Tj). Therefore
F([Vα]) = S∗

α by Proposition 3.1. �
We aim to prove that the modules we have constructed are indecomposable. We

let Ŝα denote the super-standard tableau of shape α, namely, the unique standard
immaculate tableau with the first α1 letters in the first row, the next α2 letters in
the second row, etc. We will first need a few lemmas.

Lemma 3.10. The module Vα is cyclicly generated by Ŝα.

Proof. The module Mα is cyclically generated by 1α12α2 · · · kαk = T −1(Ŝα), which
can be seen since every basis element of Mα comes from an application of the
anti-sorting operators πi on 1α12α2 · · · kαk .

Vα is a quotient of Mα, and hence cyclicly generated by the same element. �
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5 6 7
3 4
21

5 6 7
2 4
31

4 6 7
3 5
21

5 6 7
2 3
41

4 6 7
2 5
31

4 5 7
3 6
21

4 6 7
2 3
51

3 6 7
2 5
41

4 5 7
2 6
31

4 5 6
3 7
21

3 6 7
2 4
51

3 5 7
2 6
41

4 5 6
2 7
31

4 5 6
2 3
71

3 5 7
2 4
61

3 4 7
2 6
51

3 5 6
2 7
41

3 5 6
2 4
71

3 4 7
2 5
61

3 4 6
2 7
51

3 4 6
2 5
71

3 4 5
2 7
61

3 4 5
2 6
71

4 5 7
2 3
61

π1

π2

π3

π4

π5
π6

π1π2π5π6

π1π4π6

π3

π4π3

π1π2
π5
π6

π3

π1 π1π2

π1π2
π1

π1 π1π2

π1π2

π1π2

π1π2

π1π2

π1π2

π1π2
π1π2

π1π2

π1π2

π1

π1

π1

π3

π3

π2
π4
π6

π2π4π6

π4 π3

π2 π5

π5 π2

π6
π3

π2π4π5
π4π5

π6
π1

π2

π1
π4
π5

π6

π6π3π5π4
π3π5

π2π4π5

π5

π6
π3π5

π4
π6 π3

π5π4

π2π4π5

π3π6

π2π4π5
π6

π3 π6

π6π4

π6

π5

π6π5

π3π4π6

π3π5
π3π4

π3π5π6

π4

π3π4π6

π3π4π5

π3π5π6

π3π4π5
π6

π3π4π6

π3π4π5

Figure 1. A diagram representing the action of the generators πi

ofHn(0) given in equation(3.4) on the basis elements of the module
V(2,2,3).

Lemma 3.11. If P is a standard immaculate tableau of shape α such that πi(P ) =

P for all i ∈ {1, 2, · · · , n}\S(α), then P = Ŝα. In particular, if P 
= Ŝα, then there

exists an i such that πi(Ŝα) = Ŝα but πi(P ) 
= P .

Proof. If πi(P ) = P , then i must be in the cell to the left of i+1 or in a row below
i + 1. The fact that πi(P ) = P for all i ∈ {1, 2, . . . , α1 − 1} implies that the first
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row of P agrees with Ŝα. In a similar manner, we see that the second rows must
agree. Continuing in this manner, we conclude that P = Ŝα. �

Theorem 3.12. For every α |= n, Vα is an indecomposable representation of
Hn(0).

Proof. We let f be an idempotent module morphism from Vα to itself. If we can
prove f is either the zero morphism or the identity, then Vα is indecomposable
[Ja, Proposition 3.1].

Suppose f(Ŝα) =
∑

T aTT . By Lemma 3.11, for any P 
= Ŝα, there exists an i

such that πi(Ŝα) = Ŝα but πi(P ) 
= P . Since f is a module map,

(3.6)
∑
T

aTT = f(Ŝα) = f(πiŜα) = πif(Ŝα) =
∑
T

aTπiT.

The coefficient of P on the right-hand side of equation (3.6) is zero (if there was
a T such that πiT = P , then πiT = π2

i T = πiP 
= P , a contradiction). Therefore

aP = 0 for all P 
= Ŝα, so f(Ŝα) = Ŝα, or f(Ŝα) = 0. Since Vα is cyclicly generated

by Ŝα, this implies that either f is the identity morphism or the zero morphism. �

Remark 3.13. In general, Vα is not a projective Hn(0)-module. This is because the
Frobenius characteristic of a projective indecomposable Hn(0)-module is a sym-
metric function [DKLT,KT], whereas the Frobenius characteristic of Vα is the dual
immaculate function indexed by α and hence is a quasi-symmetric function (see
Theorem 3.5).
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