Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the convergence of the Calabi flow


Author: Weiyong He
Journal: Proc. Amer. Math. Soc. 143 (2015), 1273-1281
MSC (2010): Primary 53C55; Secondary 35K55
DOI: https://doi.org/10.1090/S0002-9939-2014-12318-5
Published electronically: November 4, 2014
MathSciNet review: 3293741
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (M, [\omega _0], J)$ be a compact Kähler manifold without holomorphic vector field. Suppose $ \omega _0$ is (the unique) constant scalar curvature metric. We show that the Calabi flow with any smooth initial metric converges to the constant scalar curvature metric $ \omega _0$ with the assumption that Ricci curvature stays uniformly bounded.


References [Enhancements On Off] (What's this?)

  • [1] Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259-290. MR 645743 (83i:53088)
  • [2] E. Calabi and X. X. Chen, The space of Kähler metrics. II, J. Differential Geom. 61 (2002), no. 2, 173-193. MR 1969662 (2004i:32039)
  • [3] Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189-234. MR 1863016 (2003b:32031)
  • [4] Xiuxiong Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), no. 3, 453-503. MR 2471594 (2010b:32033), https://doi.org/10.1007/s00222-008-0153-7
  • [5] X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), no. 2, 539-570. MR 2405167 (2009c:53086), https://doi.org/10.1353/ajm.2008.0018
  • [6] Xiuxiong Chen and Gang Tian, Partial regularity for homogeneous complex Monge-Ampere equations, C. R. Math. Acad. Sci. Paris 340 (2005), no. 5, 337-340 (English, with English and French summaries). MR 2127106 (2006d:32053), https://doi.org/10.1016/j.crma.2004.11.024
  • [7] X. X. Chen and G. Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1-107. MR 2434691 (2009g:32048), https://doi.org/10.1007/s10240-008-0013-4
  • [8] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13-33. MR 1736211 (2002b:58008)
  • [9] S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479-522. MR 1916953 (2003j:32030)
  • [10] Simon K. Donaldson, Conjectures in Kähler geometry, Strings and geometry, Clay Math. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 2004, pp. 71-78. MR 2103718 (2005i:32024)
  • [11] Weiyong He, Local solution and extension to the Calabi flow, J. Geom. Anal. 23 (2013), no. 1, 270-282. MR 3010280, https://doi.org/10.1007/s12220-011-9247-3
  • [12] Toshiki Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227-252. MR 909015 (88m:53126)
  • [13] Toshiki Mabuchi, Uniqueness of extremal Kähler metrics for an integral Kähler class, Internat. J. Math. 15 (2004), no. 6, 531-546. MR 2078878 (2005c:32029), https://doi.org/10.1142/S0129167X04002429
  • [14] Uwe F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), no. 2, 199-253. MR 1651416 (99m:58067)
  • [15] Stephen Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495-550. MR 1165352 (94h:32022), https://doi.org/10.2307/2374768
  • [16] J. Streets, Long time existence of Minimizing Movement solutions of Calabi flow, arxiv.org/abs/1208.2718.
  • [17] J. Streets, The consistence and convergence of K-energy minimizing movement, http://arxiv.org/abs/1301.3948.
  • [18] Gang Tian and Xiaohua Zhu, Convergence of the Kähler-Ricci flow on Fano manifolds, J. Reine Angew. Math. 678 (2013), 223-245. MR 3056108
  • [19] G. Tian, S.J Zhang, Z.L Zhang, X.H. Zhu, Supremum of Perelman's entropy and Kähler-Ricci flow on a Fano manifold, arxiv.org/abs/1107.4018.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C55, 35K55

Retrieve articles in all journals with MSC (2010): 53C55, 35K55


Additional Information

Weiyong He
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: whe@uoregon.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12318-5
Received by editor(s): June 17, 2013
Received by editor(s) in revised form: July 19, 2013
Published electronically: November 4, 2014
Communicated by: Lei Ni
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society