Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On the Blaschke circle diffeomorphisms


Author: Haifeng Chu
Journal: Proc. Amer. Math. Soc. 143 (2015), 1169-1182
MSC (2010): Primary 37F50; Secondary 37F10
DOI: https://doi.org/10.1090/S0002-9939-2014-12359-8
Published electronically: October 22, 2014
MathSciNet review: 3293732
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the analytic linearizability of a special family of analytic circle diffeomorphisms defined by

$\displaystyle B_{t,a,d}(z)=e^{2\pi it}z^{d+1}\left (\dfrac {z+a}{1+az}\right )^d$

with $ t,a\in \mathbb{R},\ d\in \mathbb{N},\ $$ \text {and}\ a>2d+1.$ Using the quasiconformal surgery procedure we prove that: If $ B_{t,a,d}$ is analytically linearizable, then the rational map $ B_{t,a,d}$ has a fixed Herman ring with Brjuno type rotation number. Conversely, for any Brjuno number $ \alpha $, we can find a rational map $ B_{t,a,d}$ with $ t,a\in \mathbb{R},\ d\in \mathbb{N},\ $$ \text {and}\ a>2d+1,$ such that $ B_{t,a,d}\vert _{S^1}$ has rotation number $ \rho (B_{t,a,d}\vert _{S^1})=\alpha $ and is analytically linearizable. These present a ``bigger family'' for the prototype of the local linearization theorem of the analytic circle diffeomorphisms.

References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787 (2009d:30001)
  • [2] V. I. Arnold, Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 21-86 (Russian). MR 0140699 (25 #4113)
  • [3] A. D. Brjuno, On convergence of transforms of differential equations to the normal form, Dokl. Akad. Nauk SSSR 165 (1965), 987-989 (Russian). MR 0192098 (33 #325)
  • [4] A. D. Brojuno, Analytic form of differential equations, Trans. Moscow Math. Soc., 25 (1971) 131-288 and 26(1972) 199-239.
  • [5] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383 (94h:30033)
  • [6] Adrien Douady, Disques de Siegel et anneaux de Herman, Astérisque 152-153 (1987), 4, 151-172 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. MR 936853 (89g:30049)
  • [7] A. Denjoy, Sur les courbes définies par les équations differentilles à la surface du tore, J. Math. Pour et Appl. 11, série 9, 333-375,(1932).
  • [8] Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287-343. MR 816367 (87f:58083)
  • [9] Lukas Geyer, Siegel discs, Herman rings and the Arnold family, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3661-3683. MR 1837254 (2002d:37071), https://doi.org/10.1090/S0002-9947-01-02662-9
  • [10] M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES, 49 (1979), 5-234.
  • [11] A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 205-222. MR 1375517 (96m:30029)
  • [12] G. H, Hardy and E. M. Wright, The Theory of Numbers, Oxford Univ. Press, London, 1938.
  • [13] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463 (49 #9202)
  • [14] Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365 (96b:58097)
  • [15] John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309 (2006g:37070)
  • [16] Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171 (95a:58035)
  • [17] Yûsuke Okuyama, Non-linearizability of $ n$-subhyperbolic polynomials at irrationally indifferent fixed points, J. Math. Soc. Japan 53 (2001), no. 4, 847-874. MR 1852886 (2002j:37061), https://doi.org/10.2969/jmsj/05340847
  • [18] R. Pérez-Marco, Solution complète au problème de Siegel delinéarisation d'u application holomorphe au voisinage d'un point fixe (d'apres J.-C. Yoccoz), Sém. Bourbaki, $ \text {n}^\circ $ (753)(1992): Astérisque (206), 273-310.
  • [19] R. Pérez-Marco, Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold, Ann. Sci. École Norm. Sup., 26 (1993), 193-217.
  • [20] R. Pérez-Marco, Total convergence or general divergence in small divisors, Comm. Math. Phys. 223 (2001), no. 3, 451-464. MR 1866162 (2003d:37063), https://doi.org/10.1007/s002200100457
  • [21] Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941 (95g:30026)
  • [22] Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1-29. MR 892140 (88i:58099)
  • [23] Carl Ludwig Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607-612. MR 0007044 (4,76c)
  • [24] Pekka Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 73-78. MR 595178 (82c:30031)
  • [25] Jean-Christophe Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de $ ({\bf C}, 0)$, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1, 55-58 (French, with English summary). MR 929279 (89i:58123)
  • [26] J. C. Yoccoz, Petits diviseurs en dimension $ 1$, Astéisque No. 231 (1995).
  • [27] Jean-Christophe Yoccoz, Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors (Cetraro, 1998) Lecture Notes in Math., vol. 1784, Springer, Berlin, 2002, pp. 125-173. MR 1924912 (2004c:37073), https://doi.org/10.1007/978-3-540-47928-4_3

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37F50, 37F10

Retrieve articles in all journals with MSC (2010): 37F50, 37F10


Additional Information

Haifeng Chu
Affiliation: School of Mathematics, Northwest University, Xi’an Shaanxi 710100, People’s Republic of China
Email: chuhaifeng@amss.ac.cn

DOI: https://doi.org/10.1090/S0002-9939-2014-12359-8
Received by editor(s): January 27, 2013
Received by editor(s) in revised form: June 23, 2013
Published electronically: October 22, 2014
Communicated by: Yingfei Yi
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society