Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Lower estimates of top Lyapunov exponent for cooperative random systems of linear ODEs

Author: Janusz Mierczyński
Journal: Proc. Amer. Math. Soc. 143 (2015), 1127-1135
MSC (2010): Primary 34C12, 34D08, 37C65; Secondary 15B48, 92D25
Published electronically: November 24, 2014
MathSciNet review: 3293728
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For cooperative random linear systems of ordinary differential equations a method is presented of obtaining lower estimates of the top Lyapunov exponent. The proofs are based on applying some polynomial Lyapunov-like function. Known estimates for the dominant eigenvalue of a nonnegative matrix due to G. Frobenius and L. Yu. Kolotilina are shown to be specializations of our results.

References [Enhancements On Off] (What's this?)

  • [1] Ludwig Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1723992 (2000m:37087)
  • [2] M. Benaïm and S. J. Schreiber, Persistence of structured populations in environmental models, Theor. Popul. Biol. 76 (2009), no. 1, 19-34, DOI 10.1016/j.tpb.2009.03.007. (not covered in MR)
  • [3] Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original. MR 1298430 (95e:15013)
  • [4] Igor Chueshov, Monotone random systems theory and applications, Lecture Notes in Mathematics, vol. 1779, Springer-Verlag, Berlin, 2002. MR 1902500 (2003d:37072)
  • [5] Miklós Farkas, Periodic motions, Applied Mathematical Sciences, vol. 104, Springer-Verlag, New York, 1994. MR 1299528 (95g:34058)
  • [6] Barnabas M. Garay and Josef Hofbauer, Robust permanence for ecological differential equations, minimax, and discretizations, SIAM J. Math. Anal. 34 (2003), no. 5, 1007-1039. MR 2001657 (2004i:37027),
  • [7] Russell A. Johnson, Kenneth J. Palmer, and George R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal. 18 (1987), no. 1, 1-33. MR 871817 (88a:58112),
  • [8] Krešimir Josić and Robert Rosenbaum, Unstable solutions of nonautonomous linear differential equations, SIAM Rev. 50 (2008), no. 3, 570-584. MR 2429450 (2009d:34128),
  • [9] L. Yu. Kolotilina, Lower bounds for the Perron root of a nonnegative matrix, Linear Algebra Appl. 180 (1993), 133-151. MR 1206413 (94b:15016),
  • [10] Tufail Malik and Hal L. Smith, Does dormancy increase fitness of bacterial populations in time-varying environments?, Bull. Math. Biol. 70 (2008), no. 4, 1140-1162. MR 2391183 (2009g:92091),
  • [11] Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Dover Publications Inc., New York, 1992. Reprint of the 1969 edition. MR 1215484
  • [12] Janusz Mierczyński, A simple proof of monotonicity for linear cooperative systems of ODEs, available at arXiv:1304.6562.
  • [13] Janusz Mierczyński and Sebastian J. Schreiber, Kolmogorov vector fields with robustly permanent subsystems, J. Math. Anal. Appl. 267 (2002), no. 1, 329-337. MR 1886831 (2003b:37041),
  • [14] Janusz Mierczyński and Wenxian Shen, Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems, J. Math. Anal. Appl. 404 (2013), no. 2, 438-458. MR 3045185,
  • [15] Janusz Mierczyński and Wenxian Shen, Persistence in forward nonautonomous competitive systems of parabolic equations, J. Dynam. Differential Equations 23 (2011), no. 3, 551-571. MR 2836650 (2012j:35172),
  • [16] Janusz Mierczyński and Wenxian Shen, Spectral theory for forward nonautonomous parabolic equations and applications, Infinite dimensional dynamical systems, Fields Inst. Commun., vol. 64, Springer, New York, 2013, pp. 57-99. MR 2986931
  • [17] Janusz Mierczyński, Wenxian Shen, and Xiao-Qiang Zhao, Uniform persistence for nonautonomous and random parabolic Kolmogorov systems, J. Differential Equations 204 (2004), no. 2, 471-510. MR 2085544 (2006f:37111),
  • [18] Henryk Minc, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1988. A Wiley-Interscience Publication. MR 932967 (89i:15001)
  • [19] Paul L. Salceanu, Robust uniform persistence in discrete and continuous nonautonomous systems, J. Math. Anal. Appl. 398 (2013), no. 2, 487-500. MR 2990074,
  • [20] Sebastian J. Schreiber, Criteria for $ C^r$ robust permanence, J. Differential Equations 162 (2000), no. 2, 400-426. MR 1751711 (2001e:92012),
  • [21] Allen J. Schwenk, Tight bounds on the spectral radius of asymmetric nonnegative matrices, Linear Algebra Appl. 75 (1986), 257-265. MR 825411 (87d:15010),
  • [22] E. Seneta, Non-negative matrices and Markov chains, Springer Series in Statistics, Springer, New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544]. MR 2209438

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34C12, 34D08, 37C65, 15B48, 92D25

Retrieve articles in all journals with MSC (2010): 34C12, 34D08, 37C65, 15B48, 92D25

Additional Information

Janusz Mierczyński
Affiliation: Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wrocław, Poland

Received by editor(s): May 25, 2013
Published electronically: November 24, 2014
Additional Notes: The author was supported by project S20058/I-18.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society