Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On topological entropy: When positivity implies +infinity


Authors: Sergiǐ Kolyada and Julia Semikina
Journal: Proc. Amer. Math. Soc. 143 (2015), 1545-1558
MSC (2010): Primary 37B40; Secondary 54H20, 54H15
DOI: https://doi.org/10.1090/S0002-9939-2014-12282-9
Published electronically: December 4, 2014
MathSciNet review: 3314068
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the relations between the properties of the topological semigroup of all continuous selfmaps $ S(X)$ on a compact metric space $ X$ (the topological group $ H(X)$ of all homeomorphisms on $ X$) and possible values of the topological entropy of its elements. In particular, we prove that topological entropy of a functional envelope on the space of all continuous selfmaps on Peano continua or on compact metric spaces with continuum many connected components has only two possible values 0 and $ +\infty $.


References [Enhancements On Off] (What's this?)

  • [1] Joseph Auslander, Sergii Kolyada, and Ľubomír Snoha, Functional envelope of a dynamical system, Nonlinearity 20 (2007), no. 9, 2245-2269. MR 2351032 (2008m:37012), https://doi.org/10.1088/0951-7715/20/9/012
  • [2] L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513 (93g:58091)
  • [3] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241-249. MR 0220249 (36 #3315)
  • [4] J. de Groot and R. J. Wille, Rigid continua and topological group-pictures, Arch. Math. 9 (1958), 441-446. MR 0101514 (21 #324)
  • [5] J. de Groot, Groups represented by homeomorphism groups, Math. Ann. 138 (1959), 80-102. MR 0119193 (22 #9959)
  • [6] Paul Gartside and Aneirin Glyn, Autohomeomorphism groups, Topology Appl. 129 (2003), no. 2, 103-110. MR 1961392 (2004g:54044), https://doi.org/10.1016/S0166-8641(02)00140-2
  • [7] Christian Grillenberger, Constructions of strictly ergodic systems. I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 323-334. MR 0340544 (49 #5296)
  • [8] Karl H. Hofmann and Sidney A. Morris, Compact homeomorphism groups are profinite, Topology Appl. 159 (2012), no. 9, 2453-2462. MR 2921833, https://doi.org/10.1016/j.topol.2011.09.050
  • [9] K.H. Hofmann and S. A. Morris, Representing a Profinite Group as the Homeomorphism Group of a Continuum, arXiv:1108.3876v1 [math.GN], 2011.
  • [10] John L. Kelley, General topology, Springer-Verlag, New York, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]; Graduate Texts in Mathematics, No. 27. MR 0370454 (51 #6681)
  • [11] Sergiĭ Kolyada, Topological dynamics: minimality, entropy and chaos, Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications, vol. 89, Institute of Mathematics of the NASU, Kiev, 2011 (Ukrainian, with Ukrainian summary). MR 3089342
  • [12] Sergiĭ Kolyada and Ľubomír Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-233. MR 1402417 (98f:58126)
  • [13] Mykola Matviichuk, Entropy of induced maps for one-dimensional dynamics, Iteration theory (ECIT '08), Grazer Math. Ber., vol. 354, Institut für Mathematik, Karl-Franzens-Universität Graz, Graz, 2009, pp. 180-185. MR 2649016 (2011f:37028)
  • [14] Michał Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 2, 167-169 (English, with Russian summary). MR 542778 (81b:58033)
  • [15] S. B. Myers, Equicontinuous sets of mappings, Ann. of Math. (2) 47 (1946), 496-502. MR 0017526 (8,165f)
  • [16] Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker Inc., New York, 1992. An introduction. MR 1192552 (93m:54002)
  • [17] W. Sierpiński, Sur les projections des ensembles complémentaires aux ensembles (A). Fund. Math., 11(1928), 117-122.
  • [18] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)
  • [19] Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943 (32 #425)
  • [20] Koichi Yano, A remark on the topological entropy of homeomorphisms, Invent. Math. 59 (1980), no. 3, 215-220. MR 579700 (82b:58082), https://doi.org/10.1007/BF01453235

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B40, 54H20, 54H15

Retrieve articles in all journals with MSC (2010): 37B40, 54H20, 54H15


Additional Information

Sergiǐ Kolyada
Affiliation: Institute of Mathematics, NASU, Tereshchenkivs’ka 3, 01601 Kyiv, Ukraine
Email: skolyada@imath.kiev.ua

Julia Semikina
Affiliation: Mathematical Institute of the University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Email: julia.semikina@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-12282-9
Received by editor(s): March 9, 2013
Received by editor(s) in revised form: June 2, 2013
Published electronically: December 4, 2014
Additional Notes: The first author was supported by Max-Planck-Institut für Mathematik (Bonn); he acknowledges the hospitality of the Institute
The second author was supported by Bonn International Graduate School in Mathematics
Communicated by: Yingfei Yi
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society