Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of the Forelli-Rudin construction and deflation identities


Author: Atsushi Yamamori
Journal: Proc. Amer. Math. Soc. 143 (2015), 1569-1581
MSC (2010): Primary 32A25
DOI: https://doi.org/10.1090/S0002-9939-2014-12317-3
Published electronically: November 5, 2014
MathSciNet review: 3314070
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a series representation formula of the Bergman kernel of a certain class of domains, which generalizes the Forelli-Rudin construction of the Hartogs domain. Our formula is applied to derive deflation type identities of the Bergman kernels for our domains.


References [Enhancements On Off] (What's this?)

  • [1] Harold P. Boas, Siqi Fu, and Emil J. Straube, The Bergman kernel function: explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), no. 3, 805-811. MR 1469401 (99f:32037), https://doi.org/10.1090/S0002-9939-99-04570-0
  • [2] John P. D'Angelo, A note on the Bergman kernel, Duke Math. J. 45 (1978), no. 2, 259-265. MR 0473231 (57 #12906)
  • [3] Miroslav Engliš, Zeroes of the Bergman kernel of Hartogs domains, Comment. Math. Univ. Carolin. 41 (2000), no. 1, 199-202. MR 1756941 (2001f:32002)
  • [4] Miroslav Engliš, A Forelli-Rudin construction and asymptotics of weighted Bergman kernels, J. Funct. Anal. 177 (2000), no. 2, 257-281. MR 1795632 (2001k:32004), https://doi.org/10.1006/jfan.2000.3642
  • [5] Miroslav Engliš and Genkai Zhang, On a generalized Forelli-Rudin construction, Complex Var. Elliptic Equ. 51 (2006), no. 3, 277-294. MR 2200983 (2007a:32001), https://doi.org/10.1080/17476930500515017
  • [6] Feng ZhiMing, Hilbert spaces of holomorphic functions on generalized Cartan-Hartogs domains, Complex Var. Elliptic Equ. 58 (2013), no. 3, 431-450. MR 3011934, https://doi.org/10.1080/17476933.2011.598927
  • [7] Frank Forelli and Walter Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974/75), 593-602. MR 0357866 (50 #10332)
  • [8] Gábor Francsics and Nicholas Hanges, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal. 142 (1996), no. 2, 494-510. MR 1423042 (97m:32039), https://doi.org/10.1006/jfan.1996.0157
  • [9] Siqi Fu, A. V. Isaev, and Steven G. Krantz, Reinhardt domains with non-compact automorphism groups, Math. Res. Lett. 3 (1996), no. 1, 109-122. MR 1393388 (97c:32043), https://doi.org/10.4310/MRL.1996.v3.n1.a11
  • [10] Robert E. Greene, Kang-Tae Kim, and Steven G. Krantz, The geometry of complex domains, Progress in Mathematics, vol. 291, Birkhäuser Boston Inc., Boston, MA, 2011. MR 2799296 (2012c:32001)
  • [11] A. V. Isaev and S. G. Krantz, Finitely smooth Reinhardt domains with non-compact automorphism group, Illinois J. Math. 41 (1997), no. 3, 412-420. MR 1458181 (98i:32054)
  • [12] A. V. Isaev and S. G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), no. 1, 1-38. MR 1706680 (2000i:32053), https://doi.org/10.1006/aima.1998.1821
  • [13] Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310 (93c:32001)
  • [14] Ewa Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), no. 3, 257-272. MR 1019793 (90i:32034)
  • [15] Jong-Do Park, New formulas of the Bergman kernels for complex ellipsoids in $ \mathbb{C}^2$, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4211-4221. MR 2431034 (2009d:32001), https://doi.org/10.1090/S0002-9939-08-09576-2
  • [16] Jong-Do Park, Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids, J. Math. Anal. Appl. 400 (2013), no. 2, 664-674. MR 3004995, https://doi.org/10.1016/j.jmaa.2012.11.017
  • [17] R. Michael Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986. MR 847923 (87i:32001)
  • [18] Guy Roos, Weighted Bergman kernels and virtual Bergman kernels, Sci. China Ser. A 48 (2005), no. suppl., 225-237. MR 2156503 (2006e:32007), https://doi.org/10.1007/BF02884708
  • [19] Satoru Shimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. (N.S.) 15 (1989), no. 2, 385-414. MR 1039248 (91j:32001)
  • [20] Toshikazu Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), no. 2, 111-128. MR 0481064 (58 #1211)
  • [21] A. Yamamori, The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function , Complex Var. Elliptic Eqs., 58 (2013), no. 6, 783-793. MR 3170660
  • [22] Atsushi Yamamori, A remark on the Bergman kernels of the Cartan-Hartogs domains, C. R. Math. Acad. Sci. Paris 350 (2012), no. 3-4, 157-160 (English, with English and French summaries). MR 2891103, https://doi.org/10.1016/j.crma.2012.01.005
  • [23] Atsushi Yamamori, A note on the Bergman kernel of a certain Hartogs domain, C. R. Math. Acad. Sci. Paris 350 (2012), no. 17-18, 827-829 (English, with English and French summaries). MR 2989385, https://doi.org/10.1016/j.crma.2012.10.009
  • [24] Yunus E. Zeytuncu, Weighted Bergman projections and kernels: $ L^p$ regularity and zeros, Proc. Amer. Math. Soc. 139 (2011), no. 6, 2105-2112. MR 2775388 (2012d:30135), https://doi.org/10.1090/S0002-9939-2010-10795-5

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32A25

Retrieve articles in all journals with MSC (2010): 32A25


Additional Information

Atsushi Yamamori
Affiliation: Center for Geometry and its Applications and Department of Mathematics, POSTECH, Pohang City 790-784, The Republic of Korea
Email: yamamori@postech.ac.kr, ats.yamamori@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-12317-3
Received by editor(s): April 29, 2013
Received by editor(s) in revised form: July 22, 2013
Published electronically: November 5, 2014
Additional Notes: The research of the author was supported in part by SRC-GaiA (Center for Geometry and its Applications), the Grant 2011-0030044 from The Ministry of Education, The Republic of Korea.
Communicated by: Franc Forstneric
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society