Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stability of the reverse Blaschke-Santaló inequality for unconditional convex bodies


Authors: Jaegil Kim and Artem Zvavitch
Journal: Proc. Amer. Math. Soc. 143 (2015), 1705-1717
MSC (2010): Primary 52A20, 53A15, 52B10
DOI: https://doi.org/10.1090/S0002-9939-2014-12334-3
Published electronically: November 20, 2014
MathSciNet review: 3314083
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Mahler's conjecture asks whether the cube is a minimizer for the volume product of a body and its polar in the class of symmetric convex bodies in $ \mathbb{R}^n$. The inequality corresponding to the conjecture is sometimes called the reverse Blaschke-Santaló inequality. The conjecture is known to be true in $ \mathbb{R}^2$ and for several special cases. In the class of unconditional convex bodies, Saint-Raymond confirmed the conjecture, and Meyer and Reisner, independently, characterized the equality case. In this paper we present a stability version of these results and also show that any symmetric convex body, which is sufficiently close to an unconditional body, satisfies the reverse Blaschke-Santaló inequality.


References [Enhancements On Off] (What's this?)

  • [1] S. Artstein-Avidan, B. Klartag, and V. Milman, The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika 51 (2004), no. 1-2, 33-48 (2005). MR 2220210 (2007a:52008), https://doi.org/10.1112/S0025579300015497
  • [2] Keith Ball, Logarithmically concave functions and sections of convex sets in $ {\bf R}^n$, Studia Math. 88 (1988), no. 1, 69-84. MR 932007 (89e:52002)
  • [3] F. Barthe, K.J. Böröczky, and M. Fradelizi, Stability of the functional forms of the Blaschke-Santaló inequality, Monatsh. Math. 173 (2014), no 2, 135-159/
  • [4] F. Barthe and M. Fradelizi, The volume product of convex bodies with many hyperplane symmetries, Amer. J. Math. 135 (2013), no. 2, 311-347. MR 3038713, https://doi.org/10.1353/ajm.2013.0018
  • [5] Károly J. Böröczky, Stability of the Blaschke-Santaló and the affine isoperimetric inequality, Adv. Math. 225 (2010), no. 4, 1914-1928. MR 2680195 (2011j:52016), https://doi.org/10.1016/j.aim.2010.04.014
  • [6] Károly J. Böröczky and Daniel Hug, Stability of the reverse Blaschke-Santaló inequality for zonoids and applications, Adv. in Appl. Math. 44 (2010), no. 4, 309-328. MR 2600783 (2011c:52005), https://doi.org/10.1016/j.aam.2009.09.002
  • [7] K.J. Böröczky, E. Makai, M. Meyer, and S. Reisner, On the volume product of planar polar convex bodies. Lower estimates with stability, Studia Sci. Math. Hungar. 50 (2013), 159-198.
  • [8] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $ {\bf R}^n$, Invent. Math. 88 (1987), no. 2, 319-340. MR 880954 (88f:52013), https://doi.org/10.1007/BF01388911
  • [9] M. Fradelizi, Y. Gordon, M. Meyer, and S. Reisner, The case of equality for an inverse Santaló functional inequality, Adv. Geom. 10 (2010), no. 4, 621-630. MR 2733956 (2011j:52017), https://doi.org/10.1515/ADVGEOM.2010.026
  • [10] Matthieu Fradelizi and Mathieu Meyer, Increasing functions and inverse Santaló inequality for unconditional functions, Positivity 12 (2008), no. 3, 407-420. MR 2421143 (2009e:26025), https://doi.org/10.1007/s11117-007-2145-z
  • [11] M. Fradelizi and M. Meyer, Some functional inverse Santaló inequalities, Adv. Math. 218 (2008), no. 5, 1430-1452. MR 2419928 (2009f:26026), https://doi.org/10.1016/j.aim.2008.03.013
  • [12] M. Fradelizi and M. Meyer, Functional inequalities related to Mahler's conjecture, Monatsh. Math. 159 (2010), no. 1-2, 13-25. MR 2564385 (2011a:39041), https://doi.org/10.1007/s00605-008-0064-0
  • [13] Matthieu Fradelizi, Mathieu Meyer, and Artem Zvavitch, An application of shadow systems to Mahler's conjecture, Discrete Comput. Geom. 48 (2012), no. 3, 721-734. MR 2957641, https://doi.org/10.1007/s00454-012-9435-3
  • [14] A. Giannopoulos, G. Paouris, and B. Vritsiou, The isotropic position and the reverse Santalo inequality, to appear in Israel J. Math.
  • [15] Y. Gordon and M. Meyer, On the Minima of the Functional Mahler Product, Houston J. Math. 40 (2014), no. 2, 385-393.
  • [16] Y. Gordon, M. Meyer, and S. Reisner, Zonoids with minimal volume-product--a new proof, Proc. Amer. Math. Soc. 104 (1988), no. 1, 273-276. MR 958082 (89i:52015), https://doi.org/10.2307/2047501
  • [17] Olof Hanner, Intersections of translates of convex bodies, Math. Scand. 4 (1956), 65-87. MR 0082696 (18,595b)
  • [18] Allan B. Hansen and Asvald Lima, The structure of finite-dimensional Banach spaces with the $ 3.2.$intersection property, Acta Math. 146 (1981), no. 1-2, 1-23. MR 594626 (82g:46037), https://doi.org/10.1007/BF02392457
  • [19] Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187-204. MR 0030135 (10,719b)
  • [20] J. Kim, Minimal volume product near Hanner polytopes, J. Funct. Anal., 266 (2014), no. 4, 2360-2402.
  • [21] Jaegil Kim and Han Ju Lee, Strong peak points and strongly norm attaining points with applications to denseness and polynomial numerical indices, J. Funct. Anal. 257 (2009), no. 4, 931-947. MR 2535458 (2010m:46069), https://doi.org/10.1016/j.jfa.2008.11.024
  • [22] Jaegil Kim and Shlomo Reisner, Local minimality of the volume-product at the simplex, Mathematika 57 (2011), no. 1, 121-134. MR 2764160 (2012a:52023), https://doi.org/10.1112/S0025579310001555
  • [23] Greg Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870-892. MR 2438998 (2009i:52005), https://doi.org/10.1007/s00039-008-0669-4
  • [24] K. Mahler, Ein Minimalproblem für konvexe Polygone, Mathematica (Zutphen) B7 (1939), 118-127.
  • [25] Kurt Mahler, Ein Übertragungsprinzip für konvexe Körper, Časopis Pěst. Mat. Fys. 68 (1939), 93-102 (German). MR 0001242 (1,202c)
  • [26] E. Makai, Jr., The recent status of the volume product problem, to appear in Banach Center Publications. Also available from http://www.renyi.hu/$ \sim $makai/jurata.pdf
  • [27] Mathieu Meyer, Une caractérisation volumique de certains espaces normés de dimension finie, Israel J. Math. 55 (1986), no. 3, 317-326 (French, with English summary). MR 876398 (88f:52017), https://doi.org/10.1007/BF02765029
  • [28] Mathieu Meyer, Convex bodies with minimal volume product in $ {\bf R}^2$, Monatsh. Math. 112 (1991), no. 4, 297-301. MR 1141097 (92k:52015), https://doi.org/10.1007/BF01351770
  • [29] Mathieu Meyer and Alain Pajor, On Santaló's inequality, Geometric aspects of functional analysis (1987-88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 261-263. MR 1008727 (90h:52012), https://doi.org/10.1007/BFb0090059
  • [30] M. Meyer and S. Reisner, Inequalities involving integrals of polar-conjugate concave functions, Monatsh. Math. 125 (1998), no. 3, 219-227. MR 1614279 (99c:52004), https://doi.org/10.1007/BF01317315
  • [31] Mathieu Meyer and Shlomo Reisner, Shadow systems and volumes of polar convex bodies, Mathematika 53 (2006), no. 1, 129-148 (2007). MR 2304056 (2008d:52010), https://doi.org/10.1112/S0025579300000061
  • [32] Fedor Nazarov, The Hörmander proof of the Bourgain-Milman theorem, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2050, Springer, Heidelberg, 2012, pp. 335-343. MR 2985302, https://doi.org/10.1007/978-3-642-29849-3_20
  • [33] Fedor Nazarov, Fedor Petrov, Dmitry Ryabogin, and Artem Zvavitch, A remark on the Mahler conjecture: local minimality of the unit cube, Duke Math. J. 154 (2010), no. 3, 419-430. MR 2730574 (2012a:52010), https://doi.org/10.1215/00127094-2010-042
  • [34] C. M. Petty, Affine isoperimetric problems, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 113-127. MR 809198 (87a:52014), https://doi.org/10.1111/j.1749-6632.1985.tb14545.x
  • [35] Shlomo Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339-346. MR 845207 (87g:52022), https://doi.org/10.1007/BF01164009
  • [36] Shlomo Reisner, Minimal volume-product in Banach spaces with a $ 1$-unconditional basis, J. London Math. Soc. (2) 36 (1987), no. 1, 126-136. MR 897680 (88h:46029), https://doi.org/10.1112/jlms/s2-36.1.126
  • [37] S. Reisner, Certain Banach spaces associated with graphs and CL-spaces with $ 1$-unconditional bases, J. London Math. Soc. (2) 43 (1991), no. 1, 137-148. MR 1099093 (92e:52004), https://doi.org/10.1112/jlms/s2-43.1.137
  • [38] Shlomo Reisner, Carsten Schütt, and Elisabeth M. Werner, Mahler's conjecture and curvature, Int. Math. Res. Not. IMRN 1 (2012), 1-16. MR 2874925
  • [39] D. Ryabogin and A. Zvavitch, Analytic methods in convex geometry in Analytical and Probabilistic Methods in the Geometry of Convex Bodies, IMPAN Lecture Notes, vol. 2, Warsaw (2014), 87-183.
  • [40] L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio de $ n$ dimensiones, Portugal. Math.8 (1949), 155-161.
  • [41] D. Seinsche, On a property of the class of $ n$-colorable graphs, J. Combinatorial Theory Ser. B 16 (1974), 191-193. MR 0337679 (49 #2448)
  • [42] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • [43] J. Saint-Raymond, Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, vol. 46, Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25 (French). MR 670798 (84j:46033)
  • [44] Alina Stancu, Two volume product inequalities and their applications, Canad. Math. Bull. 52 (2009), no. 3, 464-472. MR 2547812 (2011b:52011), https://doi.org/10.4153/CMB-2009-049-0
  • [45] Terence Tao, Structure and randomness, American Mathematical Society, Providence, RI, 2008. Pages from year one of a mathematical blog. MR 2459552 (2010h:00002)
  • [46] T. Tao, Santalo inequalities, http://www.math.ucla.edu/$ \sim $tao/preprints/Expository/
    santalo.dvi

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A20, 53A15, 52B10

Retrieve articles in all journals with MSC (2010): 52A20, 53A15, 52B10


Additional Information

Jaegil Kim
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
Email: jaegil@ualberta.ca

Artem Zvavitch
Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
Email: zvavitch@math.kent.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12334-3
Keywords: Convex bodies, polar bodies, unconditional convex bodies, Hanner polytopes, volume product, Mahler's conjecture, Blaschke-Santal\'o inequality.
Received by editor(s): March 2, 2013
Received by editor(s) in revised form: August 12, 2013, and August 15, 2013
Published electronically: November 20, 2014
Additional Notes: The authors were supported in part by U.S. National Science Foundation grant DMS-1101636, and the first author is also supported in part by NSERC
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society