Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On boundary Hölder gradient estimates for solutions to the linearized Monge-Ampère equations


Authors: Nam Q. Le and Ovidiu Savin
Journal: Proc. Amer. Math. Soc. 143 (2015), 1605-1615
MSC (2010): Primary 35J70, 35B65, 35B45, 35J96
DOI: https://doi.org/10.1090/S0002-9939-2014-12340-9
Published electronically: December 19, 2014
MathSciNet review: 3314073
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we establish boundary Hölder gradient estimates for solutions to the linearized Monge-Ampère equations with $ L^{p}$ ( $ n<p\leq \infty $) right-hand side and $ C^{1,\gamma }$ boundary values under natural assumptions on the domain, boundary data and the Monge-Ampère measure. These estimates extend our previous boundary regularity results for solutions to the linearized Monge-Ampère equations with bounded right-hand side and $ C^{1, 1}$ boundary data.


References [Enhancements On Off] (What's this?)

  • [1] Luis A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130 (1989), no. 1, 189-213. MR 1005611 (90i:35046), https://doi.org/10.2307/1971480
  • [2] Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007 (96h:35046)
  • [3] Cristian E. Gutiérrez and Truyen Nguyen, Interior gradient estimates for solutions to the linearized Monge-Ampère equation, Adv. Math. 228 (2011), no. 4, 2034-2070. MR 2836113 (2012h:35093), https://doi.org/10.1016/j.aim.2011.06.035
  • [4] Nam Q. Le and Truyen Nguyen, Global $ W^{2,p}$ estimates for solutions to the linearized Monge-Ampère equations, Math. Ann. 358 (2014), no. 3-4, 629-700. MR 3175137, https://doi.org/10.1007/s00208-013-0974-6
  • [5] N. Q. Le and O. Savin, Boundary Regularity for Solutions to the Linearized Monge-Ampère Equations, Arch. Ration. Mech. Anal. 210 (2013), no. 3, 813-836. MR 3116005, https://doi.org/10.1007/s00205-013-0653-5
  • [6] Savin, O. A localization property at the boundary for the Monge-Ampère equation. Advances in Geometric Analysis, 45-68, Adv. Lect. Math. (ALM), 21, Int. Press, Somerville, MA, 2012.
  • [7] O. Savin, Pointwise $ C^{2,\alpha }$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc. 26 (2013), no. 1, 63-99. MR 2983006, https://doi.org/10.1090/S0894-0347-2012-00747-4
  • [8] O. Savin, Global $ W^{2,p}$ estimates for the Monge-Ampère equation, Proc. Amer. Math. Soc. 141 (2013), no. 10, 3573-3578. MR 3080179, https://doi.org/10.1090/S0002-9939-2013-11748-X
  • [9] N. N. Uraltseva, Hölder continuity of gradients of solutions of parabolic equations with boundary conditions of Signorini type, Dokl. Akad. Nauk SSSR 280 (1985), no. 3, 563-565 (Russian). MR 775926 (87b:35025)
  • [10] N. N. Uraltseva, Estimates of derivatives of solutions of elliptic and parabolic inequalities, (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1143-1149. MR 934318 (90a:35033)
  • [11] Xu-Jia Wang, Some counterexamples to the regularity of Monge-Ampère equations, Proc. Amer. Math. Soc. 123 (1995), no. 3, 841-845. MR 1223269 (95d:35025), https://doi.org/10.2307/2160809
  • [12] Xu-Jia Wang, Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 637-642. MR 2273802 (2007f:35106), https://doi.org/10.1007/s11401-006-0142-3

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J70, 35B65, 35B45, 35J96

Retrieve articles in all journals with MSC (2010): 35J70, 35B65, 35B45, 35J96


Additional Information

Nam Q. Le
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Address at time of publication: Department of Mathematics, Indiana University, Bloomington, IN 47405
Email: nqle@indiana.edu

Ovidiu Savin
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Email: savin@math.columbia.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12340-9
Keywords: Linearized Monge-Amp\`ere equations, localization theorem, boundary gradient estimates
Received by editor(s): May 17, 2013
Received by editor(s) in revised form: August 8, 2013
Published electronically: December 19, 2014
Communicated by: Joachim Krieger
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society