Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Iterated hyper-extensions and an idempotent ultrafilter proof of Rado's Theorem

Author: Mauro Di Nasso
Journal: Proc. Amer. Math. Soc. 143 (2015), 1749-1761
MSC (2010): Primary 03H05; Secondary 03E05, 05D10, 11D04
Published electronically: December 8, 2014
MathSciNet review: 3314087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By using nonstandard analysis, and in particular iterated hyper-extensions, we give foundations to a peculiar way of manipulating ultrafilters on the natural numbers and their pseudo-sums. The resulting formalism is suitable for applications in Ramsey theory of numbers. To illustrate the use of our technique, we give a (rather) short proof of Milliken-Taylor's Theorem and a ultrafilter version of Rado's Theorem about partition regularity of diophantine equations.

References [Enhancements On Off] (What's this?)

  • [1] David Ballard and Karel Hrbáček, Standard foundations for nonstandard analysis, J. Symbolic Logic 57 (1992), no. 2, 741-748. MR 1169206 (93d:03071),
  • [2] Vieri Benci, A construction of a nonstandard universe, Advances in dynamical systems and quantum physics (Capri, 1993) World Sci. Publ., River Edge, NJ, 1995, pp. 11-21. MR 1414687 (97i:03040)
  • [3] Ben Barber, Neil Hindman, and Imre Leader, Partition regularity in the rationals, J. Combin. Theory Ser. A 120 (2013), no. 7, 1590-1599. MR 3092686,
  • [4] Vitaly Bergelson and Neil Hindman, Nonmetrizable topological dynamics and Ramsey theory, Trans. Amer. Math. Soc. 320 (1990), no. 1, 293-320. MR 982232 (90k:03046),
  • [5] Greg Cherlin and Joram Hirschfeld, Ultrafilters and ultraproducts in non-standard analysis, Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), North-Holland, Amsterdam, 1972, pp. 261-279. Studies in Logic and Found. Math., Vol. 69. MR 0485344 (58 #5191)
  • [6] C. C. Chang and H. J. Keisler, Model Theory, 3rd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR 1059055 (91c:03026)
  • [7] Mauro Di Nasso, $ {}^\ast {\rm ZFC}$: an axiomatic $ {}^\ast $approach to nonstandard methods, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 963-967 (English, with English and French summaries). MR 1451233 (97m:03097),
  • [8] Mauro Di Nasso, An axiomatic presentation of the nonstandard methods in mathematics, J. Symbolic Logic 67 (2002), no. 1, 315-325. MR 1889553 (2002k:03089),
  • [9] Vieri Benci and Mauro Di Nasso, Alpha-theory: an elementary axiomatics for nonstandard analysis, Expo. Math. 21 (2003), no. 4, 355-386. MR 2022004 (2004i:03108),
  • [10] Mauro Di Nasso, $ \text {ZFC}[\Omega ]$: A nonstandard set theory where all sets have nonstandard extensions (abstract), Bull. Symb. Logic, vol. 7, 2001, p. 138.
  • [11] Mauro Di Nasso, Hyper-natural numbers as ultrafilters, unpublished manuscript.
  • [12] Robert Goldblatt, Lectures on the Hyperreals, Graduate Texts in Mathematics, vol. 188, Springer-Verlag, New York, 1998. An introduction to nonstandard analysis. MR 1643950 (2000a:03113)
  • [13] Neil Hindman, Imre Leader, and Dona Strauss, Open problems in partition regularity, Combin. Probab. Comput. 12 (2003), no. 5-6, 571-583. Special issue on Ramsey theory. MR 2037071 (2005e:05147),
  • [14] Neil Hindman, Imre Leader, and Dona Strauss, Infinite partition regular matrices: solutions in central sets, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1213-1235. MR 1938754 (2003h:05187),
  • [15] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, Theory and Applications (2nd edition), W. de Gruyter, 2011.
  • [16] Vladimir Kanovei and Michael Reeken, Nonstandard Analysis, Axiomatically, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. MR 2093998 (2006e:03001)
  • [17] L. Luperi Baglini, Hyperintegers and Nonstandard Techniques in Combinatorics of Numbers, Ph.D. dissertation, 2012, University of Siena, arXiv:1212.2049.
  • [18] Amir Maleki, Solving equations in $ \beta \mathbb{N}$, Semigroup Forum 61 (2000), no. 3, 373-384. MR 1832314 (2002c:54021),
  • [19] Siu-Ah Ng and Hermann Render, The Puritz order and its relationship to the Rudin-Keisler order, Reuniting the Antipodes-constructive and nonstandard views of the continuum (Venice, 1999) Synthese Lib., vol. 306, Kluwer Acad. Publ., Dordrecht, 2001, pp. 157-166. MR 1895391 (2003d:54045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03H05, 03E05, 05D10, 11D04

Retrieve articles in all journals with MSC (2010): 03H05, 03E05, 05D10, 11D04

Additional Information

Mauro Di Nasso
Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy

Keywords: Nonstandard analysis, ultrafilters, Ramsey theory, diophantine equations
Received by editor(s): April 12, 2013
Received by editor(s) in revised form: July 30, 2013
Published electronically: December 8, 2014
Communicated by: Mirna Džamonja
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society