Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unique continuation for fractional Schrödinger operators in three and higher dimensions


Author: Ihyeok Seo
Journal: Proc. Amer. Math. Soc. 143 (2015), 1661-1664
MSC (2010): Primary 35B60; Secondary 35J10
DOI: https://doi.org/10.1090/S0002-9939-2014-12594-9
Published electronically: December 1, 2014
MathSciNet review: 3314078
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the unique continuation property for the differential inequality $ \vert(-\Delta )^{\alpha /2}u\vert\leq \vert V(x)u\vert$, where $ 0<\alpha <n$ and $ V\in L_{\textrm {loc}}^{n/\alpha ,\infty }(\mathbb{R}^n)$, $ n\geq 3$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B60, 35J10

Retrieve articles in all journals with MSC (2010): 35B60, 35J10


Additional Information

Ihyeok Seo
Affiliation: Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Email: ihseo@skku.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12594-9
Keywords: Unique continuation, Schr\"odinger operators
Received by editor(s): September 5, 2013
Published electronically: December 1, 2014
Communicated by: Joachim Krieger
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society