Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

A note on groups generated by involutions and sharply $ 2$-transitive groups


Authors: George Glauberman, Avinoam Mann and Yoav Segev
Journal: Proc. Amer. Math. Soc. 143 (2015), 1925-1932
MSC (2010): Primary 20B22; Secondary 20F99
Published electronically: December 4, 2014
MathSciNet review: 3314102
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a group generated by a set $ C$ of involutions which is closed under conjugation. Let $ \pi $ be a set of odd primes. Assume that either (1) $ G$ is solvable, or (2) $ G$ is a linear group.

We show that if the product of any two involutions in $ C$ is a $ \pi $-element, then $ G$ is solvable in both cases and $ G=O_{\pi }(G)\langle t\rangle $, where $ t\in C$.

If (2) holds and the product of any two involutions in $ C$ is a unipotent element, then $ G$ is solvable.

Finally we deduce that if $ \mathcal {G}$ is a sharply $ 2$-transitive (infinite) group of odd (permutational) characteristic, such that every $ 3$ involutions in $ \mathcal {G}$ generate a solvable or a linear group; or if $ \mathcal {G}$ is linear of (permutational) characteristic $ 0,$ then $ \mathcal {G}$ contains a regular normal abelian subgroup.


References [Enhancements On Off] (What's this?)

  • [1] J. Alperin and R. Lyons, On conjugacy classes of 𝑝-elements, J. Algebra 19 (1971), 536–537. MR 0289622
  • [2] Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
  • [3] Alexandre Borovik and Ali Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1321141
  • [4] Bernd Fischer, Distributive Quasigruppen endlicher Ordnung, Math. Z. 83 (1964), 267–303 (German). MR 0160845
  • [5] Yair Glasner and Dennis D. Gulko, Sharply 2-transitive linear groups, Int. Math. Res. Not. IMRN 10 (2014), 2691–2701. MR 3214281
  • [6] George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 0202822
  • [7] D. Gulko, A Frobenius type theorem for sharply 2-transitive countable linear groups, M.Sc. Thesis (2010), Ben-Gurion University.
  • [8] Jonathan I. Hall, Central automorphisms, 𝑍*-theorems, and loop structure, Quasigroups Related Systems 19 (2011), no. 1, 69–108. MR 2850318
  • [9] Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
  • [10] I. N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Published by The Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York, 1968. MR 0227205
  • [11] William Kerby, On infinite sharply multiply transitive groups, Vandenhoeck & Ruprecht, Göttingen, 1974. Hamburger Mathematische Einzelschriften, Neue Folge, Heft 6. MR 0384938
  • [12] V. D. Mazurov, On sharply 2-transitive groups [translation of Proceedings of the Institute of Mathematics, 30 (Russian), 114–118, Izdat. Ross. Akad. Nauk, Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1996], Siberian Adv. Math. 7 (1997), no. 3, 91–97. Siberian Advances in Mathematics. MR 1603306
  • [13] E. Rips, Y. Segev, K. Tent, A sharply $ 2$-transitive group without a non-trivial abelian normal subgroup, submitted.
  • [14] B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Matematik und ihrer Grenzgebiete, Band 76. MR 0335656

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20B22, 20F99

Retrieve articles in all journals with MSC (2010): 20B22, 20F99


Additional Information

George Glauberman
Affiliation: Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
Email: gg@math.uchicago.edu

Avinoam Mann
Affiliation: Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
Email: mann@math.huji.ac.il

Yoav Segev
Affiliation: Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel
Email: yoavs@math.bgu.ac.il

DOI: https://doi.org/10.1090/S0002-9939-2014-12405-1
Received by editor(s): May 2, 2013
Received by editor(s) in revised form: October 20, 2013
Published electronically: December 4, 2014
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2014 American Mathematical Society