Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Brannan's conjecture and trigonometric sums


Authors: Roger W. Barnard, Udaya C. Jayatilake and Alexander Yu. Solynin
Journal: Proc. Amer. Math. Soc. 143 (2015), 2117-2128
MSC (2010): Primary 30C10, 30C50
DOI: https://doi.org/10.1090/S0002-9939-2015-12398-2
Published electronically: January 22, 2015
MathSciNet review: 3314120
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some versions of Brannan's Conjecture on Taylor coefficients of the ratio of two binomials of the form $ (1+zx)^\alpha /(1-x)^\beta $ and discuss some related inequalities for trigonometric sums.


References [Enhancements On Off] (What's this?)

  • [1] D. Aharonov and S. Friedland, On an inequality connected with the coefficient conjecture for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A I 524 (1972), 14. MR 0322155 (48 #519)
  • [2] R. W. Barnard, Brannan's coefficient conjecture for certain power series, Open problems and conjectures in complex analysis, Computational Methods and Function Theory (Valparaíso, 1989), 1-26. Lecture notes in Math. 1435, Springer, Berlin, 1990. MR 1071758 (91j:12001)
  • [3] Roger W. Barnard, Kent Pearce, and William Wheeler, On a coefficient conjecture of Brannan, Complex Variables Theory Appl. 33 (1997), no. 1-4, 51-61. MR 1624894 (98m:30021)
  • [4] D. A. Brannan, On coefficient problems for certain power series, Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973), Cambridge Univ. Press, London, 1974, pp. 17-27. London Math. Soc. Lecture Note Ser., No. 12. MR 0412411 (54 #537)
  • [5] Udaya C. Jayatilake, Brannan's conjecture for initial coefficients. Complex Var. Elliptic Equ. 58 (2013), no. 5, 685-694.
  • [6] John G. Milcetich, On a coefficient conjecture of Brannan, J. Math. Anal. Appl. 139 (1989), no. 2, 515-522. MR 996975 (90d:30006), https://doi.org/10.1016/0022-247X(89)90125-X
  • [7] Daniel S. Moak, An application of hypergeometric functions to a problem in function theory, Internat. J. Math. Math. Sci. 7 (1984), no. 3, 503-506. MR 771598 (86e:33007), https://doi.org/10.1155/S0161171284000545
  • [8] Stephan Ruscheweyh and Luis Salinas, On Brannan's coefficient conjecture and applications, Glasg. Math. J. 49 (2007), no. 1, 45-52. MR 2337865 (2008f:30048), https://doi.org/10.1017/S0017089507003400
  • [9] L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen. III, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 203 (1994), 57-61 (1995) (German). MR 1335606 (97e:42003)
  • [10] W. H. Young, On a Certain Series of Fourier, Proc. London Math. Soc. s2-11 (1) (1913), 357-366. MR 1577231

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C10, 30C50

Retrieve articles in all journals with MSC (2010): 30C10, 30C50


Additional Information

Roger W. Barnard
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409
Email: roger.w.barnard@ttu.edu

Udaya C. Jayatilake
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409
Address at time of publication: Department of Mathematics, Faculty of Engineering, University of Moratuwa, Katubedda, Moratuwa, Sri Lanka
Email: ucjaya@uom.lk

Alexander Yu. Solynin
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409
Email: alex.solynin@ttu.edu

DOI: https://doi.org/10.1090/S0002-9939-2015-12398-2
Keywords: Brannan's conjecture, trigonometric sums
Received by editor(s): July 19, 2013
Received by editor(s) in revised form: November 3, 2013
Published electronically: January 22, 2015
Additional Notes: The research of the third author was partially supported by NSF grant DMS-1001882
Communicated by: Jeremy T. Tyson
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society