Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A maximum principle for Hermitian (and other) metrics

Author: László Lempert
Journal: Proc. Amer. Math. Soc. 143 (2015), 2193-2200
MSC (2010): Primary 32L10, 32Q99, 32U05
Published electronically: January 21, 2015
MathSciNet review: 3314125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider homomorphisms of hermitian holomorphic Hilbert bundles. Assuming the homomorphism decreases curvature, we prove that its pointwise norm is plurisubharmonic.

References [Enhancements On Off] (What's this?)

  • [A] Lars V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359-364. MR 1501949,
  • [BK] Robert Berman and Julien Keller, Bergman geodesics, Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., vol. 2038, Springer, Heidelberg, 2012, pp. 283-302. MR 2932447,
  • [B1] Bo Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531-560. MR 2480611 (2010c:32036),
  • [B2] B. Berndtsson, The openness conjecture for plurisubharmonic functions, arxiv: 1305.5781.
  • [CS] R. R. Coifman and S. Semmes, Interpolation of Banach spaces, Perron processes, and Yang-Mills, Amer. J. Math. 115 (1993), no. 2, 243-278. MR 1216432 (95b:46104),
  • [DK] Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556 (English, with English and French summaries). MR 1852009 (2002e:32032),
  • [GZ] Q. Guan, X. Zhou, Strong openness conjecture for plurisubharmonic functions, arxiv:1311.3781.
  • [K] Shoshichi Kobayashi, Negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975), 153-166. MR 0377126 (51 #13299)
  • [L] J. E. Littlewood, On the definition of a subharmonic function, J. London Math. Soc. 2 (1927), 189-192.
  • [LSz] László Lempert and Róbert Szőke, Direct images, fields of Hilbert spaces, and geometric quantization, Comm. Math. Phys. 327 (2014), no. 1, 49-99. MR 3177932,
  • [M] Vakhid Masagutov, Homomorphisms of infinitely generated analytic sheaves, Ark. Mat. 49 (2011), no. 1, 129-148. MR 2784261 (2012f:58015),
  • [R] H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), no. 4, 547-558. MR 604712 (82i:32049),
  • [S] S. Saks, On subharmonic functions, Acta Litt. Sci. Szeged 5 (1932) 187-193.
  • [Y] Shing Tung Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203. MR 0486659 (58 #6370)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32L10, 32Q99, 32U05

Retrieve articles in all journals with MSC (2010): 32L10, 32Q99, 32U05

Additional Information

László Lempert
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067

Received by editor(s): September 11, 2013
Received by editor(s) in revised form: December 13, 2013
Published electronically: January 21, 2015
Additional Notes: The authors research was partially supported by NSF grant DMS-1162070
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society