Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An example of non-cotorsion Selmer group


Authors: King Fai Lai, Ignazio Longhi, Ki-Seng Tan and Fabien Trihan
Journal: Proc. Amer. Math. Soc. 143 (2015), 2355-2364
MSC (2010): Primary 11S40; Secondary 11R23, 11R34, 11R42, 11R58, 11G05, 11G10
DOI: https://doi.org/10.1090/S0002-9939-2015-12459-8
Published electronically: January 21, 2015
MathSciNet review: 3326018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A/K$ be an elliptic curve over a global field of characteristic $ p>0$. We provide an example where the Pontrjagin dual of the Selmer group of $ A$ over a $ \Gamma :=\mathbb{Z}_p$-extension $ L/K$ is not a torsion $ \mathbb{Z}_p[[\Gamma ]]$-module and show that the Iwasawa Main Conjecture for $ A/L$ holds nevertheless.


References [Enhancements On Off] (What's this?)

  • [GT07] Cristian D. González-Avilés and Ki-Seng Tan, A generalization of the Cassels-Tate dual exact sequence, Math. Res. Lett. 14 (2007), no. 2, 295-302. MR 2318626 (2008k:11067), https://doi.org/10.4310/MRL.2007.v14.n2.a11
  • [Lan91] William E. Lang, Extremal rational elliptic surfaces in characteristic $ p$. I. Beauville surfaces, Math. Z. 207 (1991), no. 3, 429-437. MR 1115175 (92f:14032), https://doi.org/10.1007/BF02571400
  • [Maz72] Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266. MR 0444670 (56 #3020)
  • [Mil75] J. S. Milne, On a conjecture of Artin and Tate, Ann. of Math. (2) 102 (1975), no. 3, 517-533. MR 0414558 (54 #2659)
  • [Mil80] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
  • [Mil86a] J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press Inc., Boston, MA, 1986. MR 881804 (88e:14028)
  • [Shi92] Tetsuji Shioda, Some remarks on elliptic curves over function fields, Astérisque 209 (1992), 12, 99-114. Journées Arithmétiques, 1991 (Geneva). MR 1211006 (94d:11046)
  • [SU13] Christopher Skinner and Eric Urban, The Iwasawa Main Conjectures for $ GL_2$, Invent. Math. 195 (2014), no. 1, 1-277. MR 3148103, https://doi.org/10.1007/s00222-013-0448-1
  • [Tan93] Ki-Seng Tan, Modular elements over function fields, J. Number Theory 45 (1993), no. 3, 295-311. MR 1247386 (95d:11158), https://doi.org/10.1006/jnth.1993.1079
  • [Tan12] Ki-Seng Tan, Selmer groups over $ \Bbb {Z}_p^d$-extensions, Math. Ann. 359 (2014), no. 3-4, 1025-1075. MR 3231024, https://doi.org/10.1007/s00208-014-1023-9
  • [Ta66] John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 306, 415-440. MR 1610977

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11S40, 11R23, 11R34, 11R42, 11R58, 11G05, 11G10

Retrieve articles in all journals with MSC (2010): 11S40, 11R23, 11R34, 11R42, 11R58, 11G05, 11G10


Additional Information

King Fai Lai
Affiliation: School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
Email: kinglaihonkon@gmail.com

Ignazio Longhi
Affiliation: Department of Mathematics, National Taiwan University. Taipei 10764, Taiwan
Address at time of publication: Department of Mathematical Sciences, Xi’an Jiaotong-Liverpool University, No. 111 Ren’ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou 215123 Jiangsu, People’s Republic of China.
Email: longhi@math.ntu.edu.tw

Ki-Seng Tan
Affiliation: Department of Mathematics, National Taiwan University, Taipei 10764, Taiwan
Email: tan@math.ntu.edu.tw

Fabien Trihan
Affiliation: College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, United Kingdom
Address at time of publication: Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 4 Yonbancho, Chiyoda-ku, Tokyo 102-0081 Japan
Email: f-trihan-52m@sophia.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2015-12459-8
Keywords: Abelian variety, Selmer group, Frobenius, Iwasawa theory, Stickelberger element, syntomic
Received by editor(s): August 6, 2013
Received by editor(s) in revised form: January 21, 2014
Published electronically: January 21, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society