Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spectra of measures and wandering vectors


Authors: Dorin Ervin Dutkay and Palle E.T. Jorgensen
Journal: Proc. Amer. Math. Soc. 143 (2015), 2403-2410
MSC (2010): Primary 42A32, 05B45, 43A25
DOI: https://doi.org/10.1090/S0002-9939-2015-12656-1
Published electronically: February 6, 2015
MathSciNet review: 3326023
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a characterization of the sets that appear as Fourier spectra of measures in terms of the existence of a strongly continuous representation of the ambient group that has a wandering vector for the given set.


References [Enhancements On Off] (What's this?)

  • [1] Boris Begun, Weakly wandering vectors for abelian unitary actions, Ergodic Theory Dynam. Systems 25 (2005), no. 5, 1471-1483. MR 2173428 (2006e:37008), https://doi.org/10.1017/S0143385705000039
  • [2] Ethan M. Coven and Aaron Meyerowitz, Tiling the integers with translates of one finite set, J. Algebra 212 (1999), no. 1, 161-174. MR 1670646 (99k:11032), https://doi.org/10.1006/jabr.1998.7628
  • [3] Guizhen Cui, Wenjuan Peng, and Lei Tan, On the topology of wandering Julia components, Discrete Contin. Dyn. Syst. 29 (2011), no. 3, 929-952. MR 2773159 (2012c:37095), https://doi.org/10.3934/dcds.2011.29.929
  • [4] Dorin Ervin Dutkay, Deguang Han, and Qiyu Sun, On the spectra of a Cantor measure, Adv. Math. 221 (2009), no. 1, 251-276. MR 2509326 (2010f:28013), https://doi.org/10.1016/j.aim.2008.12.007
  • [5] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Fourier frequencies in affine iterated function systems, J. Funct. Anal. 247 (2007), no. 1, 110-137. MR 2319756 (2008f:42007), https://doi.org/10.1016/j.jfa.2007.03.002
  • [6] Dorin Ervin Dutkay and Chun-Kit Lai, Uniformity of measures with Fourier frames, Adv. Math. 252 (2014), 684-707. MR 3144246, https://doi.org/10.1016/j.aim.2013.11.012
  • [7] Bálint Farkas, Máté Matolcsi, and Péter Móra, On Fuglede's conjecture and the existence of universal spectra, J. Fourier Anal. Appl. 12 (2006), no. 5, 483-494. MR 2267631 (2007h:52022), https://doi.org/10.1007/s00041-005-5069-7
  • [8] Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101-121. MR 0470754 (57 #10500)
  • [9] Deguang Han and D. Larson, Wandering vector multipliers for unitary groups, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3347-3370. MR 1828609 (2002c:46116), https://doi.org/10.1090/S0002-9947-01-02795-7
  • [10] Deguang Han and David R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, x+94. MR 1686653 (2001a:47013), https://doi.org/10.1090/memo/0697
  • [11] Kou Hei Izuchi, Wandering subspaces and quasi-wandering subspaces in the Bergman space, New York J. Math. 17A (2011), 301-305. MR 2782741 (2012m:46028)
  • [12] Palle E. T. Jorgensen and Steen Pedersen, Dense analytic subspaces in fractal $ L^2$-spaces, J. Anal. Math. 75 (1998), 185-228. MR 1655831 (2000a:46045), https://doi.org/10.1007/BF02788699
  • [13] Mihail N. Kolountzakis and Máté Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collect. Math. (2006), no. Vol. Extra, 281-291. MR 2264214 (2007h:52023)
  • [14] I. Łaba, The spectral set conjecture and multiplicative properties of roots of polynomials, J. London Math. Soc. (2) 65 (2002), no. 3, 661-671. MR 1895739 (2003e:42015), https://doi.org/10.1112/S0024610702003149
  • [15] Izabella Łaba and Yang Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), no. 2, 409-420. MR 1929508 (2003g:28017), https://doi.org/10.1006/jfan.2001.3941
  • [16] George W. Mackey, Harmonic analysis and unitary group representations: the development from 1927 to 1950, L'émergence de l'analyse harmonique abstraite (1930-1950) (Paris, 1991), Cahiers Sém. Hist. Math. Sér. 2, vol. 2, Univ. Paris VI, Paris, 1992, pp. 13-42. MR 1187300
  • [17] George W. Mackey, Mathematical foundations of quantum mechanics, Dover Publications, Inc., Mineola, NY, 2004. With a foreword by A. S. Wightman; Reprint of the 1963 original. MR 2021668 (2005b:81004)
  • [18] Joaquim Ortega-Cerdà and Kristian Seip, Fourier frames, Ann. of Math. (2) 155 (2002), no. 3, 789-806. MR 1923965 (2003k:42055), https://doi.org/10.2307/3062132
  • [19] Walter Rudin, Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1038803 (91b:43002)
  • [20] Robert S. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math. 81 (2000), 209-238. MR 1785282 (2001i:42009), https://doi.org/10.1007/BF02788990
  • [21] Terence Tao, Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251-258. MR 2067470 (2005i:42037), https://doi.org/10.4310/MRL.2004.v11.n2.a8

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42A32, 05B45, 43A25

Retrieve articles in all journals with MSC (2010): 42A32, 05B45, 43A25


Additional Information

Dorin Ervin Dutkay
Affiliation: Department of Mathematics, University of Central Florida, 4000 Central Florida Boulevard, P.O. Box 161364, Orlando, Florida 32816-1364
Email: Dorin.Dutkay@ucf.edu

Palle E.T. Jorgensen
Affiliation: Department of Mathematics, 14 MacLean Hall, University of Iowa, Iowa City, Iowa 52242-1419
Email: jorgen@math.uiowa.edu

DOI: https://doi.org/10.1090/S0002-9939-2015-12656-1
Keywords: Fuglede conjecture, spectrum, unitary one-parameter groups, spectral pairs, locally compact abelian groups, Fourier analysis, wandering vector.
Received by editor(s): September 4, 2012
Published electronically: February 6, 2015
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society