Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Exponential bases on two dimensional trapezoids


Authors: Laura De Carli and Anudeep Kumar
Journal: Proc. Amer. Math. Soc. 143 (2015), 2893-2903
MSC (2010): Primary 42C15, 42C30
DOI: https://doi.org/10.1090/S0002-9939-2015-12329-5
Published electronically: March 11, 2015
MathSciNet review: 3336614
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the existence and stability of Riesz bases of exponential type of $ L^2(T)$ for special domains $ T\subset \mathbb{R}^2$ called trapezoids, and we construct exponential bases on the finite union of rectangles with the same height. We also generalize our main theorems in dimension $ d\ge 3$.


References [Enhancements On Off] (What's this?)

  • [1] Avdonin, S. A. On the question of Riesz bases of exponential functions in $ L^2$. (translated into English in: Vestnik Leningrad Univ. Ser. Mat., 13, pp 203-2011 (1979)
  • [2] S. A. Avdonin and S. A. Ivanov, Riesz bases of exponentials and divided differences, Algebra i Analiz 13 (2001), no. 3, 1-17 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 13 (2002), no. 3, 339-351. MR 1850184 (2002g:42009)
  • [3] Richard Bellman, Convergence of non-harmonic Fourier series, Duke Math. J. 10 (1943), 551-552. MR 0008431 (5,4b)
  • [4] Harold E. Benzinger, Nonharmonic Fourier series and spectral theory, Trans. Amer. Math. Soc. 299 (1987), no. 1, 245-259. MR 869410 (88m:42020), https://doi.org/10.2307/2000492
  • [5] Peter G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129-201. MR 1757401 (2001f:42046)
  • [6] P. Casazza and G. Kutyniok, Finite Frames: Theory and Applications, Birkhauser, 2013.
  • [7] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366. MR 0047179 (13,839a)
  • [8] Erich Freund and Joachim Petzold, Nonharmonic Fourier series: a formalism for analyzing signals, Elektron. Informationsverarb. Kybernet. 20 (1984), no. 10-11, 575-592 (English, with French, German and Russian summaries). MR 777071 (86m:94012)
  • [9] S. Grepstad and N. Lev, Multi-tiling and Riesz bases, arXiv:1212.4679 (2012)
  • [10] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), no. 1, 367-379. MR 1545625, https://doi.org/10.1007/BF01180426
  • [11] G. Kozma and S. Nitzan, Combining Riesz bases arXiv:1210.6383 (2012)
  • [12] Nir Lev, Riesz bases of exponentials on multiband spectra, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3127-3132. MR 2917085, https://doi.org/10.1090/S0002-9939-2012-11138-4
  • [13] Norman Levinson, On non-harmonic Fourier series, Ann. of Math. (2) 37 (1936), no. 4, 919-936. MR 1503319, https://doi.org/10.2307/1968628
  • [14] M. Ĭ. Kadec, The exact value of the Paley-Wiener constant, Dokl. Akad. Nauk SSSR 155 (1964), 1253-1254 (Russian). MR 0162088 (28 #5289)
  • [15] Yurii I. Lyubarskii and Alexander Rashkovskii, Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons, Ark. Mat. 38 (2000), no. 1, 139-170. MR 1749363 (2001m:32013), https://doi.org/10.1007/BF02384495
  • [16] J. Marzo, Riesz basis of exponentials for a union of cubes in $ \mathbb{R}^{d}$, arXiv:math/0601288 (2006)
  • [17] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142 (98a:01023)
  • [18] Kristian Seip, On the connection between exponential bases and certain related sequences in $ L^2(-\pi ,\pi )$, J. Funct. Anal. 130 (1995), no. 1, 131-160. MR 1331980 (96d:46030), https://doi.org/10.1006/jfan.1995.1066
  • [19] Kristian Seip, A simple construction of exponential bases in $ L^2$ of the union of several intervals, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 171-177. MR 1317335 (96c:42006), https://doi.org/10.1017/S0013091500006295
  • [20] Wenchang Sun and Xingwei Zhou, On the stability of multivariate trigonometric systems, J. Math. Anal. Appl. 235 (1999), no. 1, 159-167. MR 1758675 (2001k:42040), https://doi.org/10.1006/jmaa.1999.6386
  • [21] Sun, W. and Zhou, X. On Kadec's $ \frac 14$-Theorem and the Stability of Gabor Frames. Applied and Comput. Harm. An. 7 (1999) no. 2, 239-242.
  • [22] Robert M. Young, An introduction to nonharmonic Fourier series, 1st ed., Academic Press Inc., San Diego, CA, 2001. MR 1836633 (2002b:42001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42C15, 42C30

Retrieve articles in all journals with MSC (2010): 42C15, 42C30


Additional Information

Laura De Carli
Affiliation: Department of Mathematics, Florida International University, Miami, Florida 33199
Email: decarlil@fiu.edu

Anudeep Kumar
Affiliation: Department of Mathematics, The George Washington University, Washington, DC 20052
Email: anudeep@email.gwu.edu

DOI: https://doi.org/10.1090/S0002-9939-2015-12329-5
Keywords: Exponential bases, trapezoids, multi-rectangles
Received by editor(s): September 24, 2012
Received by editor(s) in revised form: June 19, 2013
Published electronically: March 11, 2015
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society