Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Nevanlinna-Pick spaces with hyponormal multiplication operators


Author: Michael Hartz
Journal: Proc. Amer. Math. Soc. 143 (2015), 2905-2912
MSC (2010): Primary 46E22; Secondary 47B32, 47B20
DOI: https://doi.org/10.1090/S0002-9939-2015-12373-8
Published electronically: March 12, 2015
MathSciNet review: 3336615
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Hardy space on the unit disk is the only non-trivial irreducible reproducing kernel Hilbert space which satisfies the complete Nevanlinna-Pick property and hyponormality of all multiplication operators.


References [Enhancements On Off] (What's this?)

  • [1] Jim Agler and John E. McCarthy, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175 (2000), no. 1, 111-124. MR 1774853 (2001h:47019), https://doi.org/10.1006/jfan.2000.3599
  • [2] Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002.
  • [3] Călin-Grigore Ambrozie and Dan Timotin, On an intertwining lifting theorem for certain reproducing kernel Hilbert spaces, Integral Equations Operator Theory 42 (2002), no. 4, 373-384. MR 1885440 (2002m:47012), https://doi.org/10.1007/BF01270919
  • [4] William Arveson, Subalgebras of $ C^*$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159-228. MR 1668582 (2000e:47013), https://doi.org/10.1007/BF02392585
  • [5] Joseph A. Ball, Tavan T. Trent, and Victor Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Operator theory and analysis (Amsterdam, 1997) Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 89-138. MR 1846055 (2002f:47028)
  • [6] L. E. J. Brouwer, Beweis der invarianz des $ n$-dimensionalen gebiets, Math. Ann. 71 (1911), no. 3, 305-313 (German). MR 1511658, https://doi.org/10.1007/BF01456846
  • [7] John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424 (2007e:30049)
  • [8] Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49-128. Math. Surveys, No. 13. MR 0361899 (50 #14341)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46E22, 47B32, 47B20

Retrieve articles in all journals with MSC (2010): 46E22, 47B32, 47B20


Additional Information

Michael Hartz
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: mphartz@uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-2015-12373-8
Keywords: Reproducing kernel Hilbert spaces, Nevanlinna-Pick kernels
Received by editor(s): August 18, 2013
Received by editor(s) in revised form: September 17, 2013, and September 25, 2013
Published electronically: March 12, 2015
Additional Notes: The author was partially supported by an Ontario Trillium Scholarship.
Communicated by: Pamela B. Gorkin
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society