Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Primitivity of prime countable-dimensional regular algebras


Authors: Pere Ara and Jason P. Bell
Journal: Proc. Amer. Math. Soc. 143 (2015), 2759-2766
MSC (2010): Primary 16E50; Secondary 16D60, 16N60
DOI: https://doi.org/10.1090/S0002-9939-2015-12434-3
Published electronically: March 11, 2015
MathSciNet review: 3336601
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a field and let $ R$ be a countable-dimensional prime von Neumann regular $ k$-algebra. We show that $ R$ is primitive, answering a special case of a question of Kaplansky.


References [Enhancements On Off] (What's this?)

  • [1] Gene Abrams, Jason P. Bell, and Kulumani M. Rangaswamy, On prime nonprimitive von Neumann regular algebras, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2375-2392. MR 3165642, https://doi.org/10.1090/S0002-9947-2014-05878-9
  • [2] Gonzalo Aranda Pino, John Clark, Astrid an Huef, and Iain Raeburn, Kumjian-Pask algebras of higher-rank graphs, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3613-3641. MR 3042597, https://doi.org/10.1090/S0002-9947-2013-05717-0
  • [3] Pere Ara, The extended centroid of $ C^*$-algebras, Arch. Math. (Basel) 54 (1990), no. 4, 358-364. MR 1042128 (91d:46072), https://doi.org/10.1007/BF01189582
  • [4] Pere Ara and Ruy Exel, Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions, Adv. Math. 252 (2014), 748-804. MR 3144248, https://doi.org/10.1016/j.aim.2013.11.009
  • [5] Pere Ara and Martin Mathieu, Local multipliers of $ C^*$-algebras, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2003. MR 1940428 (2004b:46071)
  • [6] M. G. Corrales Garcia, D. Martin Barquero, C. Martin Gonzalez, M. Siles Molina and J. F. Solanilla Hernandez, Extreme cycles. The center of a Leavitt path algebra, arXiv:1307.5252v1 [math.RA].
  • [7] O. I. Domanov, A prime but not primitive regular ring, Uspehi Mat. Nauk 32 (1977), no. 6(198), 219-220 (Russian). MR 0573043 (58 #28058)
  • [8] Joe W. Fisher and Robert L. Snider, Prime von Neumann regular rings and primitive group algebras, Proc. Amer. Math. Soc. 44 (1974), 244-250. MR 0342551 (49 #7297)
  • [9] Irving Kaplansky, Algebraic and analytic aspects of operator algebras, American Mathematical Society, Providence, R.I., 1970. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 1. MR 0312283 (47 #845)
  • [10] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. MR 0439876 (55 #12757)
  • [11] Kulumani M. Rangaswamy, Leavitt path algebras which are Zorn rings, Ring theory and its applications, Contemp. Math., vol. 609, Amer. Math. Soc., Providence, RI, 2014, pp. 277-283. MR 3204366, https://doi.org/10.1090/conm/609/12119

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16E50, 16D60, 16N60

Retrieve articles in all journals with MSC (2010): 16E50, 16D60, 16N60


Additional Information

Pere Ara
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Email: para@mat.uab.cat

Jason P. Bell
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Canada
Email: jpbell@uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-2015-12434-3
Keywords: von Neumann regular rings, primitive rings, prime rings, idempotents, extended centroid, multiplier rings.
Received by editor(s): September 11, 2013
Received by editor(s) in revised form: October 15, 2013, and November 18, 2013
Published electronically: March 11, 2015
Additional Notes: The first-named author was partially supported by DGI MINECO MTM2011-28992-C02-01, by FEDER UNAB10-4E-378 “Una manera de hacer Europa”, and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya
The second-named author was supported by NSERC grant 31-611456
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society