A note on structures

Author:
Tyler Lawson

Journal:
Proc. Amer. Math. Soc. **143** (2015), 3177-3181

MSC (2010):
Primary 55P43; Secondary 55S12, 55S20, 55P42

DOI:
https://doi.org/10.1090/S0002-9939-2015-12474-4

Published electronically:
February 6, 2015

MathSciNet review:
3336642

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a source of (coconnective) examples of structures that do not lift to structures, based on Mandell's proof of the equivalence between certain cochain algebras and spaces.

**[Ada60]**J. F. Adams,*On the non-existence of elements of Hopf invariant one*, Ann. of Math. (2)**72**(1960), 20–104. MR**0141119**, https://doi.org/10.2307/1970147**[Ade52]**José Adem,*The iteration of the Steenrod squares in algebraic topology*, Proc. Nat. Acad. Sci. U. S. A.**38**(1952), 720–726. MR**0050278****[BMMS86]**R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger,*𝐻_{∞} ring spectra and their applications*, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR**836132****[BR08]**Andrew Baker and Birgit Richter,*Uniqueness of 𝐸_{∞} structures for connective covers*, Proc. Amer. Math. Soc.**136**(2008), no. 2, 707–714. MR**2358512**, https://doi.org/10.1090/S0002-9939-07-08984-8**[EKMM97]**A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May,*Rings, modules, and algebras in stable homotopy theory*, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR**1417719**- [Lur07]
Jacob Lurie,
*18.917 Topics in Algebraic Topology: The Sullivan Conjecture*, MIT OpenCourseWare: Massachusetts Institute of Technology (http://ocw.mit.edu/), Fall 2007. **[Man01]**Michael A. Mandell,*𝐸_{∞} algebras and 𝑝-adic homotopy theory*, Topology**40**(2001), no. 1, 43–94. MR**1791268**, https://doi.org/10.1016/S0040-9383(99)00053-1**[May70]**J. Peter May,*A general algebraic approach to Steenrod operations*, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153–231. MR**0281196****[May78]**J. P. May,*𝐻_{∞} ring spectra and their applications*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 229–243. MR**520544**- [Noe]
Justin Noel,
- [Rez]
Charles Rezk,
*Lectures on power operations*, available at: http://www.math.uiuc

.edu/˜rezk/papers.html. **[Shi04]**Brooke Shipley,*A convenient model category for commutative ring spectra*, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic 𝐾-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 473–483. MR**2066511**, https://doi.org/10.1090/conm/346/06300

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
55P43,
55S12,
55S20,
55P42

Retrieve articles in all journals with MSC (2010): 55P43, 55S12, 55S20, 55P42

Additional Information

**Tyler Lawson**

Affiliation:
Department of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455

Email:
tlawson@math.umn.edu

DOI:
https://doi.org/10.1090/S0002-9939-2015-12474-4

Received by editor(s):
November 21, 2013

Received by editor(s) in revised form:
February 7, 2014

Published electronically:
February 6, 2015

Additional Notes:
The author was partially supported by NSF grant 0805833

Communicated by:
Michael A. Mandell

Article copyright:
© Copyright 2015
American Mathematical Society