Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An extension of Wright's 3/2-theorem for the KPP-Fisher delayed equation


Authors: Karel Hasik and Sergei Trofimchuk
Journal: Proc. Amer. Math. Soc. 143 (2015), 3019-3027
MSC (2010): Primary 34K10, 35K57; Secondary 92D25
DOI: https://doi.org/10.1090/S0002-9939-2015-12496-3
Published electronically: February 13, 2015
MathSciNet review: 3336626
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a short proof of the following natural extension of Wright's famous $ 3/2$-stability theorem: the conditions $ \tau \leq 3/2, \ c \geq 2$ imply the presence of the positive traveling fronts (not necessarily monotone) $ u = \phi (x\cdot \nu +ct), \ \vert\nu \vert =1,$ in the delayed KPP-Fisher equation $ u_t(t,x) = \Delta u(t,x) + u(t,x)(1-u(t-\tau ,x)), $ $ u \geq 0,$ $ x \in \mathbb{R}^m.$


References [Enhancements On Off] (What's this?)

  • [1] P. Ashwin, M. V. Bartuccelli, T. J. Bridges, and S. A. Gourley, Travelling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys. 53 (2002), no. 1, 103-122. MR 1889183 (2002m:35097), https://doi.org/10.1007/s00033-002-8145-8
  • [2] Henri Berestycki, Grégoire Nadin, Benoit Perthame, and Lenya Ryzhik, The non-local Fisher-KPP equation: travelling waves and steady states, Nonlinearity 22 (2009), no. 12, 2813-2844. MR 2557449 (2010j:35438), https://doi.org/10.1088/0951-7715/22/12/002
  • [3] Arnaud Ducrot and Grégoire Nadin, Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation, J. Differential Equations 256 (2014), no. 9, 3115-3140. MR 3171769, https://doi.org/10.1016/j.jde.2014.01.033
  • [4] Jian Fang and Jianhong Wu, Monotone traveling waves for delayed Lotka-Volterra competition systems, Discrete Contin. Dyn. Syst. 32 (2012), no. 9, 3043-3058. MR 2912070, https://doi.org/10.3934/dcds.2012.32.3043
  • [5] Jian Fang and Xiao-Qiang Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity 24 (2011), no. 11, 3043-3054. MR 2844826 (2012k:35287), https://doi.org/10.1088/0951-7715/24/11/002
  • [6] Teresa Faria, Wenzhang Huang, and Jianhong Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2065, 229-261. MR 2189262 (2006i:35182), https://doi.org/10.1098/rspa.2005.1554
  • [7] Teresa Faria and Sergei Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay, Nonlinearity 23 (2010), no. 10, 2457-2481. MR 2683776 (2011g:35192), https://doi.org/10.1088/0951-7715/23/10/006
  • [8] Adrian Gomez and Sergei Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation, J. Differential Equations 250 (2011), no. 4, 1767-1787. MR 2763555 (2012c:35213), https://doi.org/10.1016/j.jde.2010.11.011
  • [9] Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371 (89g:58059)
  • [10] Karel Hasik and Sergei Trofimchuk, Slowly oscillating wavefronts of the KPP-Fisher delayed equation, Discrete Contin. Dyn. Syst. 34 (2014), no. 9, 3511-3533. MR 3190991, https://doi.org/10.3934/dcds.2014.34.3511
  • [11] Balázs Bánhelyi, Tibor Csendes, Tibor Krisztin, and Arnold Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM J. Appl. Dyn. Syst. 13 (2014), no. 1, 537-563. MR 3183042, https://doi.org/10.1137/120904226
  • [12] Man Kam Kwong and Chunhua Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation, J. Differential Equations 249 (2010), no. 3, 728-745. MR 2646048 (2012c:35237), https://doi.org/10.1016/j.jde.2010.04.017
  • [13] Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, and Victor Tkachenko, Wright type delay differential equations with negative Schwarzian, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 309-321. MR 1952376 (2004a:34135)
  • [14] John Mallet-Paret and George R. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations 125 (1996), no. 2, 385-440. MR 1378762 (97a:34193a), https://doi.org/10.1006/jdeq.1996.0036
  • [15] John Mallet-Paret and George R. Sell, The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations 125 (1996), no. 2, 441-489. MR 1378763 (97a:34193b), https://doi.org/10.1006/jdeq.1996.0037
  • [16] Grégoire Nadin, Benoît Perthame, and Min Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation, C. R. Math. Acad. Sci. Paris 349 (2011), no. 9-10, 553-557 (English, with English and French summaries). MR 2802923 (2012d:35193), https://doi.org/10.1016/j.crma.2011.03.008
  • [17] E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66-87. MR 0072363 (17,272b)
  • [18] Jianhong Wu and Xingfu Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations 13 (2001), no. 3, 651-687. MR 1845097 (2003a:35114), https://doi.org/10.1023/A:1016690424892

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34K10, 35K57, 92D25

Retrieve articles in all journals with MSC (2010): 34K10, 35K57, 92D25


Additional Information

Karel Hasik
Affiliation: Mathematical Institute, Silesian University, 746 01 Opava, Czech Republic
Email: Karel.Hasik@math.slu.cz

Sergei Trofimchuk
Affiliation: Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
Email: trofimch@inst-mat.utalca.cl

DOI: https://doi.org/10.1090/S0002-9939-2015-12496-3
Keywords: KPP-Fisher equation, Wright's 3/2-theorem, delay
Received by editor(s): February 5, 2013
Received by editor(s) in revised form: March 7, 2014
Published electronically: February 13, 2015
Additional Notes: This research was realized within the framework of the OPVK program, project CZ.1.07/2.300/20.0002
The second author was also partially supported by FONDECYT (Chile), project 1110309, and by CONICYT (Chile) through PBCT program ACT-56.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society