Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quadratic polynomials, multipliers and equidistribution


Authors: Xavier Buff and Thomas Gauthier
Journal: Proc. Amer. Math. Soc. 143 (2015), 3011-3017
MSC (2010): Primary 37F10, 37F45
DOI: https://doi.org/10.1090/S0002-9939-2015-12506-3
Published electronically: February 25, 2015
MathSciNet review: 3336625
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a sequence of complex numbers $ \rho _n$, we study the asymptotic distribution of the sets of parameters $ c\in \mathbb{C}$ such that the quadratic map $ z^2+c$ has a cycle of period $ n$ and multiplier $ \rho _n$. Assume $ \frac {1}{n}\log \vert\rho _n\vert\to L$. If $ L\leq \log 2$, they equidistribute on the boundary of the Mandelbrot set. If $ L>\log 2$, they equidistribute on the equipotential outside the Mandelbrot set of level $ 2L-2\log 2$.


References [Enhancements On Off] (What's this?)

  • [BB] Giovanni Bassanelli and François Berteloot, Distribution of polynomials with cycles of a given multiplier, Nagoya Math. J. 201 (2011), 23-43. MR 2772169 (2012h:37098)
  • [BDK] Paul Blanchard, Robert L. Devaney, and Linda Keen, The dynamics of complex polynomials and automorphisms of the shift, Invent. Math. 104 (1991), no. 3, 545-580. MR 1106749 (92f:58150), https://doi.org/10.1007/BF01245090
  • [M] John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37-83. With an appendix by the author and Lei Tan. MR 1246482 (96b:58094)
  • [R] Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766 (96e:31001)
  • [S] Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407 (2008c:11002)
  • [Z] Saeed Zakeri, On biaccessible points of the Mandelbrot set, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2239-2250 (electronic). MR 2213696 (2007b:37100), https://doi.org/10.1090/S0002-9939-06-08559-5

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37F10, 37F45

Retrieve articles in all journals with MSC (2010): 37F10, 37F45


Additional Information

Xavier Buff
Affiliation: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
Email: xavier.buff@math.univ-toulouse.fr

Thomas Gauthier
Affiliation: LAMFA, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
Email: thomas.gauthier@u-picardie.fr

DOI: https://doi.org/10.1090/S0002-9939-2015-12506-3
Received by editor(s): August 29, 2013
Received by editor(s) in revised form: March 5, 2014
Published electronically: February 25, 2015
Additional Notes: The research of the first author was supported by the IUF
Communicated by: Nimish Shah
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society