Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On nonexistence of positive solutions of quasi-linear inequality on Riemannian manifolds


Author: Yuhua Sun
Journal: Proc. Amer. Math. Soc. 143 (2015), 2969-2984
MSC (2010): Primary 35J61; Secondary 58J05
DOI: https://doi.org/10.1090/S0002-9939-2015-12705-0
Published electronically: March 18, 2015
MathSciNet review: 3336621
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the nonexistence of a positive solution to the following differential inequality:

$\displaystyle div(\vert\nabla u\vert^{m-2}\nabla u)+u^{\sigma }\leq 0,$ (1)

on a noncompact complete Riemannian manifold, where $ m>1$ and $ \sigma >m-1$ are parameters. Our main result is as follows: If the volume of a geodesic ball of radius $ r$ with a fixed center $ x_0$ is bounded for large enough $ r$ by $ Cr^{p}\ln ^qr$, where $ p=\frac {m\sigma }{\sigma -m+1}, q=\frac {m-1}{\sigma -m+1}$, then (1) has no positive weak solution.

We also show the sharpness of the parameters $ p, q$.


References [Enhancements On Off] (What's this?)

  • [1] Robert Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981), no. 4, 501-508. MR 638814 (83a:58089), https://doi.org/10.1007/BF01174771
  • [2] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. MR 0385749 (52 #6608)
  • [3] G. Caristi, L. D'Ambrosio, and E. Mitidieri, Liouville theorems for some nonlinear inequalities, Tr. Mat. Inst. Steklova 260 (2008), no. Teor. Funkts. i Nelinein. Uravn. v Chastn. Proizvodn., 97-118; English transl., Proc. Steklov Inst. Math. 260 (2008), no. 1, 90-111. MR 2489506 (2009m:35555), https://doi.org/10.1134/S0081543808010070
  • [4] G. Karisti, È. Mitidieri, and S. I. Pokhozhaev, Liouville theorems for quasilinear elliptic inequalities, Dokl. Akad. Nauk 424 (2009), no. 6, 741-747 (Russian); English transl., Dokl. Math. 79 (2009), no. 1, 118-124. MR 2513890, https://doi.org/10.1134/S1064562409010360
  • [5] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525-598. MR 615628 (83f:35045), https://doi.org/10.1002/cpa.3160340406
  • [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, 1998.
  • [7] Alexander Grigoryan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135-249. MR 1659871 (99k:58195), https://doi.org/10.1090/S0273-0979-99-00776-4
  • [8] Alexander Grigor'yan and Vladimir A. Kondratiev, On the existence of positive solutions of semilinear elliptic inequalities on Riemannian manifolds, Around the research of Vladimir Maz'ya. II, Int. Math. Ser. (N. Y.), vol. 12, Springer, New York, 2010, pp. 203-218. MR 2676174 (2011m:58030), https://doi.org/10.1007/978-1-4419-1343-2_8
  • [9] Alexander Grigor'yan and Yuhua Sun, On nonnegative solutions of the inequality $ \Delta u+u^\sigma \leq 0$ on Riemannian manifolds, Comm. Pure Appl. Math. 67 (2014), no. 8, 1336-1352. MR 3225632, https://doi.org/10.1002/cpa.21493
  • [10] Ilkka Holopainen, A sharp $ L^q$-Liouville theorem for $ p$-harmonic functions, Israel J. Math. 115 (2000), 363-379. MR 1750009 (2001k:31012), https://doi.org/10.1007/BF02810597
  • [11] Andrej A. Konkov, Comparison theorems for second-order elliptic inequalities, Nonlinear Anal. 59 (2004), no. 4, 583-608. MR 2094430 (2005g:35099), https://doi.org/10.1016/j.na.2004.06.002
  • [12] Barnabé Pessoa Lima, José Fábio Bezerra Montenegro, and Newton Luís Santos, Eigenvalue estimates for the $ p$-Laplace operator on manifolds, Nonlinear Anal. 72 (2010), no. 2, 771-781. MR 2579344 (2011a:58060), https://doi.org/10.1016/j.na.2009.07.019
  • [13] Peter Lindqvist, On the equation $ {\rm div}\,(\vert \nabla u\vert ^{p-2}\nabla u)+\lambda \vert u\vert ^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164. MR 1007505 (90h:35088), https://doi.org/10.2307/2048375
  • [14] È. Mitidieri and S. I. Pokhozhaev, Absence of global positive solutions of quasilinear elliptic inequalities, Dokl. Akad. Nauk 359 (1998), no. 4, 456-460 (Russian). MR 1668404 (2000a:35263)
  • [15] È. Mitidieri, S. I. Pokhozhaev, Nonexistence of positive solutions for quasilinear elliptic problems on $ \mathbb{R}^N$, Proc. Steklov Inst. Math., Vol.227(1999), 186-216.
  • [16] È. Mitidieri and S. I. Pokhozhaev, Absence of positive solutions for quasilinear elliptic problems in $ {\bf R}^N$, Tr. Mat. Inst. Steklova 227 (1999), no. Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18, 192-222 (Russian); English transl., Proc. Steklov Inst. Math. 4 (227) (1999), 186-216. MR 1784317 (2001g:35082)
  • [17] È. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1-384 (Russian, with English and Russian summaries); English transl., Proc. Steklov Inst. Math. 3 (234) (2001), 1-362. MR 1879326 (2005d:35004)
  • [18] È. Mitidieri and S. I. Pokhozhaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities (Nauka, Moscow, 2001), Tr. Math. Inst. im., V. A. Steklova, Ross. Akad. Nauk 234 [Proc. Steklov Inst. Math. 234 (2001)].
  • [19] Patrizia Pucci and James Serrin, A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl. (9) 79 (2000), no. 1, 57-71. MR 1742565 (2001g:35277), https://doi.org/10.1016/S0021-7824(99)00146-4
  • [20] Patrizia Pucci, Marco Rigoli, and James Serrin, Qualitative properties for solutions of singular elliptic inequalities on complete manifolds, J. Differential Equations 234 (2007), no. 2, 507-543. MR 2300666 (2008b:35307), https://doi.org/10.1016/j.jde.2006.11.013
  • [21] Patrizia Pucci, James Serrin, and Henghui Zou, A strong maximum principle and a compact support principle for singular elliptic inequalities, Ricerche Mat. 48 (1999), no. suppl., 373-398. Papers in memory of Ennio De Giorgi (Italian). MR 1765693 (2001f:35055)
  • [22] James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30 #337)
  • [23] J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities, J. Math. Sci. (N. Y.) 179 (2011), no. 1, 174-183. Problems in mathematical analysis. No. 61. MR 3014104, https://doi.org/10.1007/s10958-011-0588-z
  • [24] Takaŝi Kusano and Akio Ogata, Existence and asymptotic behavior of positive solutions of second order quasilinear differential equations, Funkcial. Ekvac. 37 (1994), no. 2, 345-361. MR 1299870 (95i:34062)
  • [25] François de Thélin, Sur l'espace propre associé à la première valeur propre du pseudo-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 8, 355-358 (French, with English summary). MR 860838 (87i:35147)
  • [26] Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126-150. MR 727034 (85g:35047), https://doi.org/10.1016/0022-0396(84)90105-0

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J61, 58J05

Retrieve articles in all journals with MSC (2010): 35J61, 58J05


Additional Information

Yuhua Sun
Affiliation: Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany
Address at time of publication: School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
Email: sunyuhua@nankai.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2015-12705-0
Keywords: Quasi-linear inequalities, critical exponent, Riemannian manifold, volume growth
Received by editor(s): February 10, 2014
Published electronically: March 18, 2015
Communicated by: Joachim Krieger
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society