Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On asymptotic formulas for certain $ q$-series involving partial theta functions


Authors: Sihun Jo and Byungchan Kim
Journal: Proc. Amer. Math. Soc. 143 (2015), 3253-3263
MSC (2010): Primary 11P82, 11P81
DOI: https://doi.org/10.1090/proc/12166
Published electronically: April 20, 2015
MathSciNet review: 3348769
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we investigate the integer sequence $ a_d (n)$, where for a positive integer $ d$, $ a_d (n)$ is defined by

$\displaystyle \prod _{n=1}^{\infty } \frac {1}{1-q^n} \sum _{n=0}^{\infty } (-1)^n q^{ ( d n^2 - ( d - 2) n ) / 2 } = \sum _{n=0}^{\infty } a_d (n) q^n . $

In particular, we will present a combinatorial model for $ a_d (n)$ via integer partitions and this will play a crucial role in obtaining an asymptotic formula for $ a_d (n)$. Moreover, we will show that $ p(n) - 2 a_d (n)$ has an unexpected sign pattern via combinatorial arguments and asymptotic formulas.

References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067 (99c:11126)
  • [2] G. E. Andrews, Ramanujan's lost notebook. I. partial theta functions, Adv. in Math. 41 (1981), 137-172.
  • [3] George E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR 1634067 (99c:11126)
  • [4] George E. Andrews, Concave compositions, Electron. J. Combin. 18 (2011), no. 2, Paper 6, 13. MR 2795783 (2012e:05039)
  • [5] A. Berkovich, On the difference of partial theta functions, preprint.
  • [6] Bruce C. Berndt and Byungchan Kim, Asymptotic expansions of certain partial theta functions, Proc. Amer. Math. Soc. 139 (2011), no. 11, 3779-3788. MR 2823024 (2012h:11067), https://doi.org/10.1090/S0002-9939-2011-11062-1
  • [7] Kathrin Bringmann and Karl Mahlburg, Asymptotic inequalities for positive crank and rank moments, Trans. Amer. Math. Soc. 366 (2014), no. 2, 1073-1094. MR 3130326, https://doi.org/10.1090/S0002-9947-2013-05945-4
  • [8] Kathrin Bringmann and Ken Ono, Coefficients of harmonic Maass forms, Partitions, $ q$-series, and modular forms, Dev. Math., vol. 23, Springer, New York, 2012, pp. 23-38. MR 3051180, https://doi.org/10.1007/978-1-4614-0028-8_3
  • [9] Peter Hagis Jr., On the partitions of an integer into distinct odd summands, Amer. J. Math. 87 (1965), 867-873. MR 0188182 (32 #5621)
  • [10] G. H. Hardy, Asymptotic Formulaae in Combinatory Analysis, Proc. London Math. Soc. S2-17, no. 1, 75. MR 1575586, https://doi.org/10.1112/plms/s2-17.1.75
  • [11] A. E. Ingham, A Tauberian theorem for partitions, Ann. of Math. (2) 42 (1941), 1075-1090. MR 0005522 (3,166a)
  • [12] C. C. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum. Regiomonti, fratrum Bornträger (reprinted in Gesammelte Werke, Vol. 1, pp. 49-239; Reimer, Berlin, 1881) (1829)
  • [13] Byungchan Kim, On the subpartitions of the ordinary partitions, Ramanujan J. 23 (2010), no. 1-3, 159-167. MR 2739209 (2011j:11196), https://doi.org/10.1007/s11139-009-9202-0
  • [14] Byungchan Kim and Eunmi Kim, On the subpartitions of the ordinary partitions, II, Electron. J. Combin. 21 (2014), no. 4, Paper 4.21, 11. MR 3292258
  • [15] Louis W. Kolitsch, Rogers-Ramanujan subpartitions and their connections to other partitions, Ramanujan J. 16 (2008), no. 2, 163-167. MR 2424918 (2009f:11129), https://doi.org/10.1007/s11139-007-9105-x
  • [16] Günter Meinardus, Asymptotische Aussagen über Partitionen, Math. Z. 59 (1954), 388-398 (German). MR 0062781 (16,17e)
  • [17] Hans Rademacher, The Fourier Coefficients of the Modular Invariant J($ \tau $), Amer. J. Math. 60 (1938), no. 2, 501-512. MR 1507331, https://doi.org/10.2307/2371313

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11P82, 11P81

Retrieve articles in all journals with MSC (2010): 11P82, 11P81


Additional Information

Sihun Jo
Affiliation: Department of Mathematics, Yonsei University, Seoul 120-749, Republic of Korea
Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-Gu Seoul 130-722, Republic of Korea
Email: topspace@kias.re.kr

Byungchan Kim
Affiliation: School of Liberal Arts and Institute of Convergence Fundamental Studies, Seoul National University of Science and Technology, 232 Gongneung-Ro, Nowongu, Seoul 139–743, Republic of Korea
Email: bkim4@seoultech.ac.kr

DOI: https://doi.org/10.1090/proc/12166
Keywords: Partial theta function, integer partitions, asymptotic formula
Received by editor(s): September 28, 2012
Received by editor(s) in revised form: October 1, 2012, January 7, 2013, and September 7, 2013
Published electronically: April 20, 2015
Additional Notes: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science.
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society