Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


On nonlinear interpolation

Authors: T. Kappeler and P. Topalov
Journal: Proc. Amer. Math. Soc. 143 (2015), 3421-3428
MSC (2010): Primary 46B70, 46B45, 47J35
Published electronically: April 23, 2015
MathSciNet review: 3348785
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a case study on asymptotics of spectral quantities of Schrödinger operators in fractional Sobolev spaces on the circle we show how a nonlinear version of the Riesz-Thorin theorem on the interpolation of linear operators can be applied.

References [Enhancements On Off] (What's this?)

  • [1] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275 (58 #2349)
  • [2] Jerry Bona and Ridgway Scott, Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces, Duke Math. J. 43 (1976), no. 1, 87-99. MR 0393887 (52 #14694)
  • [3] T. Kappeler, B. Schaad, and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 243-284. MR 2985321,
  • [4] T. Kappeler, B. Schaad, P. Topalov: Qualitative features of periodic solutions of KdV, arXiv:1110.0455, to appear in Comm. Partial Differential Equations
  • [5] Thomas Kappeler and Jürgen Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 45, Springer-Verlag, Berlin, 2003. MR 1997070 (2004g:37099)
  • [6] S. B. Kuksin, Oscillations in space-periodic nonlinear Schrödinger equations, Geom. Funct. Anal. 7 (1997), no. 2, 338-363. MR 1445390 (98e:35157),
  • [7] Lech Maligranda, Lars Erik Persson, and John Wyller, Interpolation and partial differential equations, J. Math. Phys. 35 (1994), no. 9, 5035-5046. MR 1290918 (95g:46065),
  • [8] Jürgen Pöschel and Eugene Trubowitz, Inverse spectral theory, Pure and Applied Mathematics, vol. 130, Academic Press Inc., Boston, MA, 1987. MR 894477 (89b:34061)
  • [9] M. Reed, B. Simon: Methods of modern mathematical physics, Vol. 2, Academic Press, Boston, 1975
  • [10] A. M. Savchuk and A. A. Shkalikov, On the eigenvalues of the Sturm-Liouville operator with potentials in Sobolev spaces, Mat. Zametki 80 (2006), no. 6, 864-884 (Russian, with Russian summary); English transl., Math. Notes 80 (2006), no. 5-6, 814-832. MR 2311614 (2008d:34160),
  • [11] A. Savchuk, A. Shkalikov: On the interpolation of analytic maps, arXiv:1307.0623.
  • [12] L. Tartar, Interpolation non linéaire et régularité, J. Functional Analysis 9 (1972), 469-489 (French). MR 0310619 (46 #9717)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B70, 46B45, 47J35

Retrieve articles in all journals with MSC (2010): 46B70, 46B45, 47J35

Additional Information

T. Kappeler
Affiliation: Mathematics Institute, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland

P. Topalov
Affiliation: Department of Mathematics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115

Received by editor(s): July 15, 2013
Published electronically: April 23, 2015
Additional Notes: The first author was supported in part by the Swiss National Science Foundation
The second author was supported in part by the NSF grant DMS-0901443.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society