Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isolating Rankin-Selberg lifts


Authors: Jayce R. Getz and Jamie Klassen
Journal: Proc. Amer. Math. Soc. 143 (2015), 3319-3329
MSC (2010): Primary 11F66; Secondary 20G05
DOI: https://doi.org/10.1090/proc/12389
Published electronically: April 6, 2015
MathSciNet review: 3348774
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a number field and let $ \pi $ be a cuspidal unitary automorphic representation of $ \mathrm {GL}_{mn}(\mathbb{A}_F)$ where $ m$ and $ n$ are integers greater than one. We propose a conjecturally necessary condition for $ \pi $ to be a Rankin-Selberg transfer of an automorphic representation of $ \mathrm {GL}_m \times \mathrm {GL}_n(\mathbb{A}_F)$. As evidence for the conjecture we prove the corresponding statement about automorphic $ L$-parameters.


References [Enhancements On Off] (What's this?)

  • [A] James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650
  • [BO] Cristina M. Ballantine and Rosa C. Orellana, A combinatorial interpretation for the coefficients in the Kronecker product $ s_{(n-p,p)}\ast s_\lambda $, Sém. Lothar. Combin. 54A (2005/07), Art. B54Af, 29 pp. (electronic). MR 2264933 (2008a:05267)
  • [BorT] A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95-104 (French). MR 0294349 (45 #3419)
  • [CKPSS] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163-233. MR 2075885 (2006a:22010), https://doi.org/10.1007/s10240-004-0020-z
  • [Dyn] E. B. Dynkin, Maximal Subgroups of the Classical Groups, AMS Translations (2) 6 (1957) 245-378.
  • [FH] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249 (93a:20069)
  • [FLN] Edward Frenkel, Robert Langlands, and Báo Châu Ngô, Formule des traces et fonctorialité: le début d'un programme, Ann. Sci. Math. Québec 34 (2010), no. 2, 199-243 (French, with English and French summaries). MR 2779866 (2012c:11240)
  • [FN] Edward Frenkel and Bao Châu Ngô, Geometrization of trace formulas, Bull. Math. Sci. 1 (2011), no. 1, 129-199. MR 2823791 (2012k:22026), https://doi.org/10.1007/s13373-011-0009-0
  • [Ful] William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693 (99f:05119)
  • [G] Jayce R. Getz, An approach to nonsolvable base change and descent, J. Ramanujan Math. Soc. 27 (2012), no. 2, 143-211. MR 2977357
  • [GRS] David Ginzburg, Stephen Rallis, and David Soudry, Generic automorphic forms on $ {\rm SO}(2n+1)$: functorial lift to $ {\rm GL}(2n)$, endoscopy, and base change, Internat. Math. Res. Notices 14 (2001), 729-764. MR 1846354 (2002g:11065), https://doi.org/10.1155/S1073792801000381
  • [GW] Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486 (2011a:20119)
  • [H] P. E. Herman Quadratic Base Change and the Analytic Continuation of the Asai L-function: A new Trace formula approach, submitted.
  • [La] R. P. Langlands, Beyond endoscopy, in Contributions to Automorphic Forms, Geometry, and Number Theory: A Volume in Honor of Joseph Shalika, The Johns Hopkins University Press, 2004.
  • [MP] Marvin Marcus and Roger Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396. MR 0105425 (21 #4167)
  • [V] Akshay Venkatesh, ``Beyond endoscopy'' and special forms on GL(2), J. Reine Angew. Math. 577 (2004), 23-80. MR 2108212 (2006b:22016), https://doi.org/10.1515/crll.2004.2004.577.23

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F66, 20G05

Retrieve articles in all journals with MSC (2010): 11F66, 20G05


Additional Information

Jayce R. Getz
Affiliation: Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
Email: jgetz@math.duke.edu

Jamie Klassen
Affiliation: Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H3A 0B9
Email: michigan.j.frog@gmail.com

DOI: https://doi.org/10.1090/proc/12389
Received by editor(s): February 26, 2013
Received by editor(s) in revised form: July 4, 2013, and October 18, 2013
Published electronically: April 6, 2015
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society