Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Analyticity of dimensions for hyperbolic surface diffeomorphisms


Author: M. Pollicott
Journal: Proc. Amer. Math. Soc. 143 (2015), 3465-3474
MSC (2010): Primary 37D35, 37F35
DOI: https://doi.org/10.1090/proc/12477
Published electronically: April 28, 2015
MathSciNet review: 3348789
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we give a simple proof that the Hausdorff dimension of the basic set for a real analytic Smale horseshoe map depends analytically on the transformation. This method is based on the use of dynamical zeta functions. We prove analogous statements for the value of the pointwise dimension of the measure of maximal entropy and then use this to address an interesting question raised by Damanik and Gorodetski.


References [Enhancements On Off] (What's this?)

  • [1] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989 (56 #1364)
  • [2] Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-25. MR 556580 (81g:57023)
  • [3] David Damanik and Anton Gorodetski, The density of states measure of the weakly coupled Fibonacci Hamiltonian, Geom. Funct. Anal. 22 (2012), no. 4, 976-989. MR 2984122, https://doi.org/10.1007/s00039-012-0173-8
  • [4] Serge Cantat, Bers and Hénon, Painlevé and Schrödinger, Duke Math. J. 149 (2009), no. 3, 411-460. MR 2553877 (2011f:37077), https://doi.org/10.1215/00127094-2009-042
  • [5] Martin Casdagli, Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation, Comm. Math. Phys. 107 (1986), no. 2, 295-318. MR 863644 (88d:58101)
  • [6] A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), no. 3, 581-597. MR 1022308 (90i:58150), https://doi.org/10.1007/BF01393838
  • [7] Miaohua Jiang and Rafael de la Llave, Smooth dependence of thermodynamic limits of SRB-measures, Comm. Math. Phys. 211 (2000), no. 2, 303-333. MR 1754517 (2001g:37038), https://doi.org/10.1007/s002200050814
  • [8] Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310 (93c:32001)
  • [9] Ricardo Mañé, The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.) 20 (1990), no. 2, 1-24. MR 1143171 (92k:58200), https://doi.org/10.1007/BF02585431
  • [10] Heather McCluskey and Anthony Manning, Hausdorff dimension for horseshoes, Ergodic Theory Dynam. Systems 3 (1983), no. 2, 251-260. MR 742227 (85j:58127), https://doi.org/10.1017/S0143385700001966
  • [11] William Parry, Synchronisation of canonical measures for hyperbolic attractors, Comm. Math. Phys. 106 (1986), no. 2, 267-275. MR 855312 (88b:58088)
  • [12] William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356 (92f:58141)
  • [13] David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655 (80g:82017)
  • [14] D. Ruelle, Generalized zeta-functions for Axiom A basic sets, Bull. Amer. Math. Soc. 82 (1976), no. 1, 153-156. MR 0400311 (53 #4146)
  • [15] David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982), no. 1, 99-107. MR 684247 (84f:58095)
  • [16] A. Verjovsky and H. Wu, Hausdorff dimension of Julia sets of complex Hénon mappings, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 849-861. MR 1406438 (97g:58143), https://doi.org/10.1017/S0143385700009147
  • [17] Christian Wolf, Dimension of Julia sets of polynomial automorphisms of $ \mathbf {C}^2$, Michigan Math. J. 47 (2000), no. 3, 585-600. MR 1813546 (2002a:37072), https://doi.org/10.1307/mmj/1030132596
  • [18] Lai Sang Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems 2 (1982), no. 1, 109-124. MR 684248 (84h:58087)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37D35, 37F35

Retrieve articles in all journals with MSC (2010): 37D35, 37F35


Additional Information

M. Pollicott
Affiliation: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email: mpollic@maths.warwick.ac.uk

DOI: https://doi.org/10.1090/proc/12477
Received by editor(s): May 10, 2013
Received by editor(s) in revised form: November 30, 2013
Published electronically: April 28, 2015
Communicated by: Nimish Shah
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society