Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the Dziobek central configurations


Author: Jaume Llibre
Journal: Proc. Amer. Math. Soc. 143 (2015), 3587-3591
MSC (2010): Primary 70F07; Secondary 70F15
DOI: https://doi.org/10.1090/S0002-9939-2015-12502-6
Published electronically: February 16, 2015
MathSciNet review: 3348799
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the Newtonian $ n$-body problem in $ \mathbb{R}^{n-2}$ with $ n\geq 3$ we prove that the following two statements are equivalent.

(a)
Let $ x$ be a Dziobek central configuration having one mass located at the center of mass.

(b)
Let $ x$ be a central configuration formed by $ n-1$ equal masses located at the vertices of a regular $ (n-2)$-simplex together with an arbitrary mass located at its barycenter.

References [Enhancements On Off] (What's this?)

  • [1] Alain Albouy, Symétrie des configurations centrales de quatre corps, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 2, 217-220 (French, with English and French summaries). MR 1320359 (95k:70023)
  • [2] A. Albouy, Recherches sur le problème des n corps, Notes Scientifiques et Techniques du Bureau des Longitudes, Paris (1997), 78 pp.
  • [3] Alain Albouy and Alain Chenciner, Le problème des $ n$ corps et les distances mutuelles, Invent. Math. 131 (1998), no. 1, 151-184 (French). MR 1489897 (98m:70017), https://doi.org/10.1007/s002220050200
  • [4] Alain Albouy and Vadim Kaloshin, Finiteness of central configurations of five bodies in the plane, Ann. of Math. (2) 176 (2012), no. 1, 535-588. MR 2925390, https://doi.org/10.4007/annals.2012.176.1.10
  • [5] Alain Albouy and Jaume Llibre, Spatial central configurations for the $ 1+4$ body problem, Celestial mechanics (Evanston, IL, 1999) Contemp. Math., vol. 292, Amer. Math. Soc., Providence, RI, 2002, pp. 1-16. MR 1884890 (2003b:70017), https://doi.org/10.1090/conm/292/04914
  • [6] O. Dziobek, Ueber einen merkwürdigen Fall des Vielkörperproblems, Astron. Nach. 152 (1900), 32-46.
  • [7] Yusuke Hagihara, Celestial mechanics, The MIT Press, Cambridge, Mass.-London, 1970. Volume I: Dynamical principles and transformation theory. MR 0478835 (57 #18306)
  • [8] Marshall Hampton and Richard Moeckel, Finiteness of relative equilibria of the four-body problem, Invent. Math. 163 (2006), no. 2, 289-312. MR 2207019 (2008c:70019), https://doi.org/10.1007/s00222-005-0461-0
  • [9] J.L. Lagrange, Essai sur le problème des trois corps, recueil des pièces qui ont remporté le prix de l'Académie Royale des Sciences de Paris, tome IX, 1772, reprinted in Ouvres, Vol. 6 (Gauthier-Villars, Paris, 1873), 229-324.
  • [10] Richard Moeckel, On central configurations, Math. Z. 205 (1990), no. 4, 499-517. MR 1082871 (92b:70012), https://doi.org/10.1007/BF02571259
  • [11] Richard Moeckel, Generic finiteness for Dziobek configurations, Trans. Amer. Math. Soc. 353 (2001), no. 11, 4673-4686 (electronic). MR 1851188 (2002m:70018), https://doi.org/10.1090/S0002-9947-01-02828-8
  • [12] Kenneth R. Meyer, Bifurcation of a central configuration, Celestial Mech. 40 (1987), no. 3-4, 273-282. MR 938404 (90c:70017), https://doi.org/10.1007/BF01235844
  • [13] F. R. Moulton, The straight line solutions of the problem of $ n$ bodies, Ann. of Math. (2) 12 (1910), no. 1, 1-17. MR 1503509, https://doi.org/10.2307/2007159
  • [14] Julian I. Palmore, Classifying relative equilibria. II, Bull. Amer. Math. Soc. 81 (1975), 489-491. MR 0363076 (50 #15514)
  • [15] Donald G. Saari, On the role and the properties of $ n$-body central configurations, Proceedings of the Sixth Conference on Mathematical Methods in Celestial Mechanics (Math. Forschungsinst., Oberwolfach, 1978), Part I, 1980, pp. 9-20. MR 564603 (81a:70016), https://doi.org/10.1007/BF01230241
  • [16] Dieter S. Schmidt, Central configurations in $ {\bf R}^2$ and $ {\bf R}^3$, Hamiltonian dynamical systems (Boulder, CO, 1987) Contemp. Math., vol. 81, Amer. Math. Soc., Providence, RI, 1988, pp. 59-76. MR 986257 (90d:70028), https://doi.org/10.1090/conm/081/986257
  • [17] S. Smale, Topology and mechanics. II. The planar $ n$-body problem, Invent. Math. 11 (1970), 45-64. MR 0321138 (47 #9671)
  • [18] Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, v. 5, Princeton University Press, Princeton, NJ, 1941. MR 0005824 (3,215b)
  • [19] Zhihong Xia, Central configurations with many small masses, J. Differential Equations 91 (1991), no. 1, 168-179. MR 1106123 (92d:70010), https://doi.org/10.1016/0022-0396(91)90137-X

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 70F07, 70F15

Retrieve articles in all journals with MSC (2010): 70F07, 70F15


Additional Information

Jaume Llibre
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Email: jllibre@mat.uab.cat

DOI: https://doi.org/10.1090/S0002-9939-2015-12502-6
Keywords: Central configuration, $n$-body problem
Received by editor(s): November 27, 2011
Received by editor(s) in revised form: March 16, 2014
Published electronically: February 16, 2015
Additional Notes: The first author is partially supported by a MINECO/FEDER grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014SGR-568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, grant UNAB13-4E-1604.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society