Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free spaces over countable compact metric spaces


Author: A. Dalet
Journal: Proc. Amer. Math. Soc. 143 (2015), 3537-3546
MSC (2010): Primary 46B10, 46B28
DOI: https://doi.org/10.1090/S0002-9939-2015-12518-X
Published electronically: February 25, 2015
MathSciNet review: 3348795
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the Lipschitz-free space over a countable compact metric space is isometric to a dual space and has the metric approximation property.


References [Enhancements On Off] (What's this?)

  • [1] Laetitia Borel-Mathurin, Approximation properties and non-linear geometry of Banach spaces, Houston J. Math. 38 (2012), no. 4, 1135-1148. MR 3019026
  • [2] Gilles Godefroy, The use of norm attainment, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 3, 417-423. MR 3129049
  • [3] G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121-141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030906 (2004m:46027), https://doi.org/10.4064/sm159-1-6
  • [4] Gilles Godefroy and Narutaka Ozawa, Free Banach spaces and the approximation properties, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1681-1687. MR 3168474, https://doi.org/10.1090/S0002-9939-2014-11933-2
  • [5] Gilles Godefroy and Pierre David Saphar, Three-space problems for the approximation properties, Proc. Amer. Math. Soc. 105 (1989), no. 1, 70-75. MR 930249 (89e:46015), https://doi.org/10.2307/2046736
  • [6] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 1955 (1955), no. 16, 140 (French). MR 0075539 (17,763c)
  • [7] Petr Hájek and Eva Pernecká, On Schauder bases in Lipschitz-free spaces, J. Math. Anal. Appl. 416 (2014), no. 2, 629-646. MR 3188728, https://doi.org/10.1016/j.jmaa.2014.02.060
  • [8] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171-217. MR 2068975 (2005c:46113)
  • [9] G. Lancien and E. Pernecká, Approximation properties and Schauder decompositions in Lipschitz-free spaces, J. Funct. Anal. 264 (2013), no. 10, 2323-2334. MR 3035057, https://doi.org/10.1016/j.jfa.2013.02.012
  • [10] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York, 1977. MR 0500056 (58 #17766)
  • [11] Assaf Naor and Gideon Schechtman, Planar earthmover is not in $ L_1$, SIAM J. Comput. 37 (2007), no. 3, 804-826 (electronic). MR 2341917 (2008g:46011), https://doi.org/10.1137/05064206X
  • [12] A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-243. MR 0308753 (46 #7867)
  • [13] Ju. Ī. Petunīn and A. N. Plīčko, Some properties of the set of functionals that attain a supremum on the unit sphere, Ukrain. Mat. Ž. 26 (1974), 102-106, 143 (Russian). MR 0336299 (49 #1075)
  • [14] Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645 (2002g:46002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B10, 46B28

Retrieve articles in all journals with MSC (2010): 46B10, 46B28


Additional Information

A. Dalet
Affiliation: Laboratoire de Mathématiques de Besançon, CNRS UMR 6623, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
Email: aude.dalet@univ-fcomte.fr

DOI: https://doi.org/10.1090/S0002-9939-2015-12518-X
Keywords: Lipschitz-free space, duality, bounded approximation property.
Received by editor(s): July 22, 2013
Received by editor(s) in revised form: March 11, 2014
Published electronically: February 25, 2015
Additional Notes: The first author was partially supported by PHC Barrande 26516YG
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society