Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subalgebras that cover or avoid chief factors of Lie algebras


Author: David A. Towers
Journal: Proc. Amer. Math. Soc. 143 (2015), 3377-3385
MSC (2010): Primary 17B05, 17B30, 17B50
DOI: https://doi.org/10.1090/S0002-9939-2015-12533-6
Published electronically: March 18, 2015
MathSciNet review: 3348780
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We call a subalgebra $ U$ of a Lie algebra $ L$ a $ CAP$-subalgebra of $ L$ if for any chief factor $ H/K$ of $ L$, we have $ H \cap U = K \cap U$ or $ H+U = K+U$. In this paper we investigate some properties of such subalgebras and obtain some characterizations for a finite-dimensional Lie algebra $ L$ to be solvable under the assumption that some of its maximal subalgebras or $ 2$-maximal subalgebras be $ CAP$-subalgebras.


References [Enhancements On Off] (What's this?)

  • [1] Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350-355. MR 0220785 (36 #3837)
  • [2] Georgia M. Benkart and J. Marshall Osborn, Rank one Lie algebras, Ann. of Math. (2) 119 (1984), no. 3, 437-463. MR 744860 (86g:17006), https://doi.org/10.2307/2007082
  • [3] Jean-Marie Bois, Generators of simple Lie algebras in arbitrary characteristics, Math. Z. 262 (2009), no. 4, 715-741. MR 2511748 (2010c:17011), https://doi.org/10.1007/s00209-008-0397-3
  • [4] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0251042 (40 #4273)
  • [5] Klaus Doerk and Trevor Hawkes, Finite soluble groups, de Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992. MR 1169099 (93k:20033)
  • [6] Charles B. Hallahan and Julius Overbeck, Cartan subalgebras of meta-nilpotent Lie algebras, Math. Z. 116 (1970), 215-217. MR 0277580 (43 #3313)
  • [7] Xiaolei Liu and Nanqing Ding, On chief factors of finite groups, J. Pure Appl. Algebra 210 (2007), no. 3, 789-796. MR 2324607 (2008c:20034), https://doi.org/10.1016/j.jpaa.2006.11.008
  • [8] Salvatore Siciliano, On the Cartan subalgebras of Lie algebras over small fields, J. Lie Theory 13 (2003), no. 2, 511-518. MR 2003157 (2004h:17021)
  • [9] Ernest L. Stitzinger, Theorems on Cartan subalgebras like some on Carter subgroups, Trans. Amer. Math. Soc. 159 (1971), 307-315. MR 0280556 (43 #6276)
  • [10] Ernest L. Stitzinger, Covering-avoidance for saturated formations of solvable Lie algebras, Math. Z. 124 (1972), 237-249. MR 0297829 (45 #6881)
  • [11] Ernest L. Stitzinger, On saturated formations of solvable Lie algebras, Pacific J. Math. 47 (1973), 531-538. MR 0335585 (49 #366)
  • [12] M. J. Tomkinson, Cover-avoidance properties in finite soluble groups, Canad. Math. Bull. 19 (1976), no. 2, 213-216. MR 0432754 (55 #5737)
  • [13] David A. Towers, Complements of intervals and prefrattini subalgebras of solvable Lie algebras, Proc. Amer. Math. Soc. 141 (2013), no. 6, 1893-1901. MR 3034416, https://doi.org/10.1090/S0002-9939-2012-11521-7
  • [14] David A. Towers, $ c$-ideals of Lie algebras, Comm. Algebra 37 (2009), no. 12, 4366-4373. MR 2588856 (2010k:17017), https://doi.org/10.1080/00927870902829023
  • [15] Guo Xiuyun and K. P. Shum, Cover-avoidance properties and the structure of finite groups, J. Pure Appl. Algebra 181 (2003), no. 2-3, 297-308. MR 1975303 (2004g:20027), https://doi.org/10.1016/S0022-4049(02)00327-4

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B05, 17B30, 17B50

Retrieve articles in all journals with MSC (2010): 17B05, 17B30, 17B50


Additional Information

David A. Towers
Affiliation: Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, England
Email: d.towers@lancaster.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2015-12533-6
Keywords: Lie algebras, solvable, chief factor, cover, avoid
Received by editor(s): January 31, 2014
Received by editor(s) in revised form: April 1, 2014
Published electronically: March 18, 2015
Communicated by: Kailash Misra
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society