Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

New structure for orthogonal quantum group invariants


Authors: Qingtao Chen and Kefeng Liu
Journal: Proc. Amer. Math. Soc. 143 (2015), 3645-3657
MSC (2010): Primary 57M27; Secondary 81R50
DOI: https://doi.org/10.1090/proc/12548
Published electronically: April 28, 2015
MathSciNet review: 3348806
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Based on the orthogonal Labastida-Mariño-Ooguri-Vafa conjecture made by L. Chen and Q. Chen (2012), we derive an infinite product formula for Chern-Simons partition functions, which generalizes Liu and Peng's recent results to the orthogonal case. Symmetry property of this new infinite product structure is also discussed.


References [Enhancements On Off] (What's this?)

  • [1] Anna Beliakova and Christian Blanchet, Skein construction of idempotents in Birman-Murakami-Wenzl algebras, Math. Ann. 321 (2001), no. 2, 347-373. MR 1866492 (2002h:57018), https://doi.org/10.1007/s002080100233
  • [2] Vincent Bouchard, Bogdan Florea, and Marcos Mariño, Topological open string amplitudes on orientifolds, J. High Energy Phys. 2 (2005), 002, 35 pp. (electronic). MR 2140507 (2006h:81260), https://doi.org/10.1088/1126-6708/2005/02/002
  • [3] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math. 63 (1937) 854-872.
  • [4] Lin Chen, Chern-Simons theory of knots invariants, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)-University of California, Los Angeles. MR 2713712
  • [5] Lin Chen and Qingtao Chen, Orthogonal quantum group invariants of links, Pacific J. Math. 257 (2012), no. 2, 267-318. MR 2972467, https://doi.org/10.2140/pjm.2012.257.267
  • [6] Qingtao Chen, Some mathematical aspects of quantum field theory, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)-University of California, Berkeley. MR 2717855
  • [7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239-246. MR 776477 (86e:57007), https://doi.org/10.1090/S0273-0979-1985-15361-3
  • [8] Rajesh Gopakumar and Cumrun Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1415-1443. MR 1796682 (2001k:81272)
  • [9] V. F. R. Jones, A new knot polynomial and von Neumann algebras, Notices Amer. Math. Soc. 33 (1986), no. 2, 219-225. MR 830613 (87d:57007)
  • [10] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335-388. MR 908150 (89c:46092), https://doi.org/10.2307/1971403
  • [11] Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395-407. MR 899057 (88f:57006), https://doi.org/10.1016/0040-9383(87)90009-7
  • [12] Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417-471. MR 958895 (90g:57007), https://doi.org/10.2307/2001315
  • [13] José M. F. Labastida and Marcos Mariño, A new point of view in the theory of knot and link invariants, J. Knot Theory Ramifications 11 (2002), no. 2, 173-197. MR 1895369 (2003h:57016), https://doi.org/10.1142/S0218216502001561
  • [14] José M. F. Labastida, Marcos Mariño, and Cumrun Vafa, Knots, links and branes at large $ N$, J. High Energy Phys. 11 (2000), Paper 7, 42. MR 1806596 (2003b:57015), https://doi.org/10.1088/1126-6708/2000/11/007
  • [15] W. B. R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107-141. MR 880512 (88b:57012), https://doi.org/10.1016/0040-9383(87)90025-5
  • [16] Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals, J. Differential Geom. 65 (2003), no. 2, 289-340. MR 2058264 (2005m:14104)
  • [17] Kefeng Liu and Pan Peng, On a proof of the Labastida-Mariño-Ooguri-Vafa conjecture, Math. Res. Lett. 17 (2010), no. 3, 493-506. MR 2653684 (2011d:58059), https://doi.org/10.4310/MRL.2010.v17.n3.a9
  • [18] Kefeng Liu and Pan Peng, Proof of the Labastida-Mariño-Ooguri-Vafa conjecture, J. Differential Geom. 85 (2010), no. 3, 479-525. MR 2739811 (2012a:57019)
  • [19] Kefeng Liu and Pan Peng, New structures of knot invariants, Commun. Number Theory Phys. 5 (2011), no. 3, 601-615. MR 2864461, https://doi.org/10.4310/CNTP.2011.v5.n3.a1
  • [20] Marcos Mariño, String theory and the Kauffman polynomial, Comm. Math. Phys. 298 (2010), no. 3, 613-643. MR 2670922 (2011g:57016), https://doi.org/10.1007/s00220-010-1088-6
  • [21] Hirosi Ooguri and Cumrun Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000), no. 3, 419-438. MR 1765411 (2001i:81254), https://doi.org/10.1016/S0550-3213(00)00118-8
  • [22] Józef H. Przytycki and Paweł Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), no. 2, 115-139. MR 945888 (89h:57006)
  • [23] Arun Ram, A Frobenius formula for the characters of the Hecke algebras, Invent. Math. 106 (1991), no. 3, 461-488. MR 1134480 (93c:20029), https://doi.org/10.1007/BF01243921
  • [24] Arun Ram, Characters of Brauer's centralizer algebras, Pacific J. Math. 169 (1995), no. 1, 173-200. MR 1346252 (96k:20020)
  • [25] Arun Ram, A ``second orthogonality relation'' for characters of Brauer algebras, European J. Combin. 18 (1997), no. 6, 685-706. MR 1468338 (98m:20015), https://doi.org/10.1006/eujc.1996.0132
  • [26] N. Reshetikhin and V. G. Turaev, Invariants of $ 3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547-597. MR 1091619 (92b:57024), https://doi.org/10.1007/BF01239527
  • [27] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1-26. MR 1036112 (91c:57016)
  • [28] Hans Wenzl, On the structure of Brauer's centralizer algebras, Ann. of Math. (2) 128 (1988), no. 1, 173-193. MR 951511 (89h:20059), https://doi.org/10.2307/1971466
  • [29] Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351-399. MR 990772 (90h:57009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M27, 81R50

Retrieve articles in all journals with MSC (2010): 57M27, 81R50


Additional Information

Qingtao Chen
Affiliation: Mathematics Section, International Center for Theoretical Physics, Strada Costiera, 11, Trieste, I-34151, Italy
Email: qchen1@ictp.it

Kefeng Liu
Affiliation: Center of Mathematical Sciences, Zhejiang University, Box 310027, Hangzhou, People’s Republic of China — and — Department of Mathematics, University of California at Los Angeles, Box 951555, Los Angeles, California 90095-1555
Email: liu@math.ucla.edu

DOI: https://doi.org/10.1090/proc/12548
Received by editor(s): October 12, 2013
Published electronically: April 28, 2015
Communicated by: Lei Ni
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society