Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Fusion rules among irreducible $ V_{\sqrt{2}A_2}^\tau$-modules of twisted type


Author: Hsian-Yang Chen
Journal: Proc. Amer. Math. Soc. 143 (2015), 3717-3726
MSC (2010): Primary 17B69
DOI: https://doi.org/10.1090/S0002-9939-2015-12521-X
Published electronically: March 18, 2015
MathSciNet review: 3359564
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we first compute the quantum dimensions of irreducible $ V_{\sqrt {2} A_2}^\tau $-modules. These quantum dimensions give upper bounds on fusion rules among irreducible $ V_{\sqrt {2} A_2}^\tau $-modules. Together with the lower bounds obtained by Lam and the author, we determine explicitly fusion rules among all irreducible $ V_{\sqrt {2} A_2}^\tau $-modules of twisted type. This work completes the program for determining the fusion rules among irreducible $ V_{\sqrt {2}A_2}^\tau $-modules.


References [Enhancements On Off] (What's this?)

  • [CL14] Ching Hung Lam and Hsian-Yang Chen, Coset construction of $ \mathbb{Z}/3$ orbifold vertex operator algebra $ V^\tau _{\sqrt {2}A_2}$, J. Pure Appl. Algebra 218 (2014), no. 1, 148-173. MR 3120617, https://doi.org/10.1016/j.jpaa.2013.05.002
  • [DJX13] Chongying Dong, Xiangyu Jiao, and Feng Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441-6469. MR 3105758, https://doi.org/10.1090/S0002-9947-2013-05863-1
  • [DLM00] Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1-56. MR 1794264 (2001k:17043), https://doi.org/10.1007/s002200000242
  • [DLT$^+$04] Chongying Dong, Ching Hung Lam, Kenichiro Tanabe, Hiromichi Yamada, and Kazuhiro Yokoyama, $ \mathbb{Z}_3$ symmetry and $ W_3$ algebra in lattice vertex operator algebras, Pacific J. Math. 215 (2004), no. 2, 245-296. MR 2068782 (2005c:17045), https://doi.org/10.2140/pjm.2004.215.245
  • [DM94] Chongying Dong and Geoffrey Mason, The construction of the moonshine module as a $ Z_p$-orbifold, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992) Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 37-52. MR 1302011, https://doi.org/10.1090/conm/175/01836
  • [Don93] Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245-265. MR 1245855 (94j:17023), https://doi.org/10.1006/jabr.1993.1217
  • [FLM88] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026 (90h:17026)
  • [Hua08] Yi-Zhi Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), no. 1, 103-154. MR 2387861 (2009e:17056), https://doi.org/10.1142/S0219199708002727
  • [KLY03] Masaaki Kitazume, Ching Hung Lam, and Hiromichi Yamada, 3-state Potts model, Moonshine vertex operator algebra, and $ 3A$-elements of the Monster group, Int. Math. Res. Not. 23 (2003), 1269-1303. MR 1967318 (2004b:17051), https://doi.org/10.1155/S1073792803212010
  • [Li94] Hai Sheng Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 279-297. MR 1303287 (96e:17063), https://doi.org/10.1016/0022-4049(94)90104-X
  • [LL03] James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933 (2004k:17050)
  • [Miy13] Masahiko Miyamoto, A $ \mathbb{Z}_3$-orbifold theory of lattice vertex operator algebra and $ \mathbb{Z}_3$-orbifold constructions, Symmetries, integrable systems and representations, Springer Proc. Math. Stat., vol. 40, Springer, Heidelberg, 2013, pp. 319-344. MR 3077690, https://doi.org/10.1007/978-1-4471-4863-0_13
  • [Tan05] Kenichiro Tanabe, On intertwining operators and finite automorphism groups of vertex operator algebras, J. Algebra 287 (2005), no. 1, 174-198. MR 2134264 (2006e:17041), https://doi.org/10.1016/j.jalgebra.2005.01.044
  • [TY07] Kenichiro Tanabe and Hiromichi Yamada, The fixed point subalgebra of a lattice vertex operator algebra by an automorphism of order three, Pacific J. Math. 230 (2007), no. 2, 469-510. MR 2309169 (2009c:17050), https://doi.org/10.2140/pjm.2007.230.469
  • [TY09] Kenichiro Tanabe and Hiromichi Yamada, Representations of a fixed-point subalgebra of a class of lattice vertex operator algebras by an automorphism of order three, European J. Combin. 30 (2009), no. 3, 725-735. MR 2494446 (2009m:17028), https://doi.org/10.1016/j.ejc.2008.07.002
  • [TY13] Kenichiro Tanabe and Hiromichi Yamada, Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three, J. Math. Soc. Japan 65 (2013), no. 4, 1169-1242. MR 3127822, https://doi.org/10.2969/jmsj/06541169
  • [Zhu96] Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237-302. MR 1317233 (96c:17042), https://doi.org/10.1090/S0894-0347-96-00182-8

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B69

Retrieve articles in all journals with MSC (2010): 17B69


Additional Information

Hsian-Yang Chen
Affiliation: Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
Email: hychen@math.sinica.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-2015-12521-X
Keywords: Vertex operator algebra, orbifold theory, quantum dimension
Received by editor(s): September 24, 2013
Received by editor(s) in revised form: April 10, 2014
Published electronically: March 18, 2015
Communicated by: Kailash Misra
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society