Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On $ \mu$-statistical convergence


Authors: B. T. Bilalov and S. R. Sadigova
Journal: Proc. Amer. Math. Soc. 143 (2015), 3869-3878
MSC (2010): Primary 40A05, 26A15, 11B05
DOI: https://doi.org/10.1090/S0002-9939-2015-12528-2
Published electronically: February 26, 2015
MathSciNet review: 3359578
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The concept of $ \mu $-statistical convergence at a point for measurable functions in measurable space with a measure is introduced in this work. This concept is a generalization of a similar idea about the sequence of numbers. We also introduce the concept of $ \mu $-statistical fundamentality at a point, and the equivalence of these two concepts is proved. The concept of $ \mu $-statistical convergence at a point generalizes the usual one of the limit of a function at a point.


References [Enhancements On Off] (What's this?)

  • [1] H. Fast, Sur la convergence statistique, Colloquium Math. 2 (1951), 241-244 (1952) (French). MR 0048548 (14,29c)
  • [2] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150 (English, with Russian summary). MR 587239 (81k:40002)
  • [3] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. MR 0104946 (21 #3696)
  • [4] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313. MR 816582 (87b:40001), https://doi.org/10.1524/anly.1985.5.4.301
  • [5] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187-1192. MR 1181163 (94e:40008), https://doi.org/10.2307/2160076
  • [6] A. Zygmund, Trigonometric series, Vol. II, Cambridge Univ. Press, London-New York, 1979.
  • [7] J. S. Connor, The statistical and strong $ p$-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63. MR 954458 (89k:40013)
  • [8] Jeff Connor, $ R$-type summability methods, Cauchy criteria, $ P$-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), no. 2, 319-327. MR 1095221 (92i:40005), https://doi.org/10.2307/2159248
  • [9] J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), no. 1, 59-66. MR 1113068 (92e:40001), https://doi.org/10.1524/anly.1991.11.1.59
  • [10] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141-145. MR 938459 (89k:40012), https://doi.org/10.1017/S0305004100065312
  • [11] D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (1994), no. 4, 381-386. MR 1272809 (95a:46012)
  • [12] M. Mačaj and T. Šalát, Statistical convergence of subsequences of a given sequence, Math. Bohem. 126 (2001), no. 1, 191-208. MR 1826482 (2002c:40002)
  • [13] Jeff Connor and K.-G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003), no. 1, 93-121. MR 1994482 (2004e:26004), https://doi.org/10.1216/rmjm/1181069988
  • [14] John A. Fridy and Mohammad K. Khan, Tauberian theorems via statistical convergence, J. Math. Anal. Appl. 228 (1998), no. 1, 73-95. MR 1659877 (99m:40007), https://doi.org/10.1006/jmaa.1998.6118
  • [15] J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), no. 1, 59-66. MR 1113068 (92e:40001), https://doi.org/10.1524/anly.1991.11.1.59
  • [16] Anindita Basu and P. D. Srivastava, Statistical convergence on composite vector valued sequence space, J. Math. Appl. 29 (2007), 75-90. MR 2345116 (2008f:46011)
  • [17] A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138. MR 1911352 (2003f:41041), https://doi.org/10.1216/rmjm/1030539612
  • [18] Akif D. Gadjiev and Arash M. Ghorbanalizadeh, On the $ A$-statistical approximation by sequences of $ k$-positive linear operators, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 31 (2009), 41-52. MR 2675460 (2011f:41018)
  • [19] A. D. Gadjiev, Simultaneous statistical approximation of analytic functions and their derivatives by $ k$-positive linear operators, Azerb. J. Math. 1 (2011), no. 1, 57-66. MR 2776097 (2012c:41040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 40A05, 26A15, 11B05

Retrieve articles in all journals with MSC (2010): 40A05, 26A15, 11B05


Additional Information

B. T. Bilalov
Affiliation: Department of Non-harmonic Analysis, Institute of Mathematics and Mechanics of NAS of Azerbaijan, B. Vahabzadeh 9, Baku, Azerbaijan Republic, AZ1141
Email: b_bilalov@mail.ru

S. R. Sadigova
Affiliation: Department of Non-harmonic Analysis, Institute of Mathematics and Mechanics of NAS of Azerbaijan, B. Vahabzadeh 9, Baku, Azerbaijan Republic, AZ1141
Email: s_sadigova@mail.ru

DOI: https://doi.org/10.1090/S0002-9939-2015-12528-2
Keywords: Statistical convergence, statistical fundamentality, statistical continuity
Received by editor(s): July 28, 2013
Received by editor(s) in revised form: April 21, 2014
Published electronically: February 26, 2015
Communicated by: Sergei K. Suslov
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society