Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fusion rules of Virasoro vertex operator algebras


Author: Xianzu Lin
Journal: Proc. Amer. Math. Soc. 143 (2015), 3765-3776
MSC (2010): Primary 17B69
DOI: https://doi.org/10.1090/proc/12552
Published electronically: May 1, 2015
MathSciNet review: 3359568
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the fusion rules of Virasoro vertex operator algebras $ L(c_{1,q},0)$, for $ q\geq 1$. Roughly speaking, we consider $ L(c_{1,q},0)$ as the limit of $ L(c_{n,nq-1},0)$, for $ n\rightarrow \infty $, and the fusion rules of $ L(c_{1,q},0)$ follow as the limits of the fusion rules of $ L(c_{n,nq-1},0)$.


References [Enhancements On Off] (What's this?)

  • [1] Dražen Adamović and Antun Milas, Logarithmic intertwining operators and $ \mathcal {W}(2,2p-1)$ algebras, J. Math. Phys. 48 (2007), no. 7, 073503, 20. MR 2337684 (2009b:81079), https://doi.org/10.1063/1.2747725
  • [2] Dražen Adamović and Antun Milas, On the triplet vertex algebra $ \mathcal {W}(p)$, Adv. Math. 217 (2008), no. 6, 2664-2699. MR 2397463 (2009e:17050), https://doi.org/10.1016/j.aim.2007.11.012
  • [3] Chongying Dong and Cuipo Jiang, A characterization of vertex operator algebra $ L(\frac 12,0)\otimes L(\frac 12,0)$, Comm. Math. Phys. 296 (2010), no. 1, 69-88. MR 2606628 (2011c:17049), https://doi.org/10.1007/s00220-009-0964-4
  • [4] B. L. Feigin and D. B. Fuks, Representation of the Virasoro algebra, in: Representations of Infinite Dimensional Lie Groups and Lie Algebras, Gordon and Breach, 1989.
  • [5] B. L. Feĭgin and D. B. Fuchs, Verma modules over the Virasoro algebra, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 230-245. MR 770243 (86g:17004), https://doi.org/10.1007/BFb0099939
  • [6] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494 (94a:17007), https://doi.org/10.1090/memo/0494
  • [7] Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123-168. MR 1159433 (93g:17045), https://doi.org/10.1215/S0012-7094-92-06604-X
  • [8] Kenji Iohara and Yoshiyuki Koga, Representation theory of the Virasoro algebra, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2011. MR 2744610 (2011m:17058)
  • [9] V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, vol. 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1021978 (90k:17013)
  • [10] Antun Milas, Fusion rings for degenerate minimal models, J. Algebra 254 (2002), no. 2, 300-335. MR 1933872 (2003k:17037), https://doi.org/10.1016/S0021-8693(02)00096-0
  • [11] James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933 (2004k:17050)
  • [12] Haisheng Li, Determining fusion rules by $ A(V)$-modules and bimodules, J. Algebra 212 (1999), no. 2, 515-556. MR 1676853 (2000d:17032), https://doi.org/10.1006/jabr.1998.7655
  • [13] X. Lin, $ ADE$ subalgebras of the triplet vertex algebra $ W(p)$: $ E_6$, $ E_7$, preprint.
  • [14] Alvany Rocha-Caridi and Nolan R. Wallach, Characters of irreducible representations of the Lie algebra of vector fields on the circle, Invent. Math. 72 (1983), no. 1, 57-75. MR 696690 (85a:17010), https://doi.org/10.1007/BF01389129
  • [15] Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7 (1993), 197-211. MR 1230296 (94i:17034), https://doi.org/10.1155/S1073792893000212

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B69

Retrieve articles in all journals with MSC (2010): 17B69


Additional Information

Xianzu Lin
Affiliation: College of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350108, People’s Republic of China
Email: linxianzu@126.com

DOI: https://doi.org/10.1090/proc/12552
Keywords: Fusion rules, Virasoro vertex operator algebras, intertwining operator
Received by editor(s): February 24, 2014
Received by editor(s) in revised form: May 2, 2014, and May 17, 2014
Published electronically: May 1, 2015
Additional Notes: This work was supported by the National Natural Science Foundation for young (no.11401098).
Communicated by: Kailash C. Misra
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society