Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

From Sobolev inequality to doubling


Authors: Lyudmila Korobenko, Diego Maldonado and Cristian Rios
Journal: Proc. Amer. Math. Soc. 143 (2015), 4017-4028
MSC (2010): Primary 35J70, 35J60, 35B65, 46E35, 31E05, 30L99
DOI: https://doi.org/10.1090/S0002-9939-2015-12556-7
Published electronically: March 18, 2015
MathSciNet review: 3359590
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In various analytical contexts, it is proved that a weak Sobolev inequality implies a doubling property for the underlying measure.


References [Enhancements On Off] (What's this?)

  • [1] Martin T. Barlow, Alexander Grigor'yan, and Takashi Kumagai, On the equivalence of parabolic Harnack inequalities and heat kernel estimates, J. Math. Soc. Japan 64 (2012), no. 4, 1091-1146. MR 2998918, https://doi.org/10.2969/jmsj/06441091
  • [2] Marco Biroli and Umberto Mosco, Formes de Dirichlet et estimations structurelles dans les milieux discontinus, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 9, 593-598 (French, with English summary). MR 1133491 (93c:35028)
  • [3] M. Biroli and U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (4) 169 (1995), 125-181 (English, with English and Italian summaries). MR 1378473 (97b:35082), https://doi.org/10.1007/BF01759352
  • [4] Marco Biroli and Umberto Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), no. 1, 37-44 (English, with English and Italian summaries). MR 1340280 (96i:46034a)
  • [5] Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. MR 2867756
  • [6] Anders Björn and Niko Marola, Moser iteration for (quasi)minimizers on metric spaces, Manuscripta Math. 121 (2006), no. 3, 339-366. MR 2267657 (2007k:35124), https://doi.org/10.1007/s00229-006-0040-8
  • [7] Estibalitz Durand-Cartagena, Jesús A. Jaramillo, and Nageswari Shanmugalingam, First order Poincaré inequalities in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 287-308. MR 3076810, https://doi.org/10.5186/aasfm.2013.3825
  • [8] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. MR 643158 (84i:35070), https://doi.org/10.1080/03605308208820218
  • [9] Bruno Franchi, Guozhen Lu, and Richard L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices 1 (1996), 1-14. MR 1383947 (97k:26012), https://doi.org/10.1155/S1073792896000013
  • [10] Bruno Franchi, Carlos Pérez, and Richard L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), no. 1, 108-146. MR 1609261 (99d:42042), https://doi.org/10.1006/jfan.1997.3175
  • [11] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606 (2011k:60249)
  • [12] A. A. Grigoryan, The heat equation on noncompact Riemannian manifolds, Mat. Sb. 182 (1991), no. 1, 55-87 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 1, 47-77. MR 1098839 (92h:58189)
  • [13] Piotr Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403-415. MR 1401074 (97f:46050), https://doi.org/10.1007/BF00275475
  • [14] Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160 (2000j:46063), https://doi.org/10.1090/memo/0688
  • [15] Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115 (2008g:31019)
  • [16] Juha Heinonen and Pekka Koskela, Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand. 77 (1995), no. 2, 251-271. MR 1379269 (97e:30039)
  • [17] Jun Kigami, Volume doubling measures and heat kernel estimates on self-similar sets, Mem. Amer. Math. Soc. 199 (2009), no. 932, viii+94. MR 2512802 (2010e:28007), https://doi.org/10.1090/memo/0932
  • [18] Jun Kigami, Robert S. Strichartz, and Katharine C. Walker, Constructing a Laplacian on the diamond fractal, Experiment. Math. 10 (2001), no. 3, 437-448. MR 1917429 (2003d:28013)
  • [19] Juha Kinnunen and Nageswari Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401-423. MR 1856619 (2002i:35054), https://doi.org/10.1007/s002290100193
  • [20] L. Korobenko and C. Rios, Regularity of solutions to degenerate non-doubling second order equations, preprint available at arXiv:1401.8047v1 [math.AP].
  • [21] Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar and Schoen, Potential Anal. 21 (2004), no. 3, 241-262. MR 2075670 (2005f:31015), https://doi.org/10.1023/B:POTA.0000033331.88514.6e
  • [22] Takashi Kumagai, Heat kernel estimates and parabolic Harnack inequalities on graphs and resistance forms, Publ. Res. Inst. Math. Sci. 40 (2004), no. 3, 793-818. MR 2074701 (2005g:60122)
  • [23] Kazuhiro Kuwae, Functional calculus for Dirichlet forms, Osaka J. Math. 35 (1998), no. 3, 683-715. MR 1648400 (99h:31014)
  • [24] Kazuhiro Kuwae, Yoshiroh Machigashira, and Takashi Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269-316. MR 1865418 (2002m:58052), https://doi.org/10.1007/s002090100252
  • [25] Niko Marola and Mathias Masson, On the Harnack inequality for parabolic minimizers in metric measure spaces, Tohoku Math. J. (2) 65 (2013), no. 4, 569-589. MR 3161434, https://doi.org/10.2748/tmj/1386354296
  • [26] D. D. Monticelli, S. Rodney, and R. L. Wheeden, Boundedness of weak solutions of degenerate quasilinear equations with rough coefficients, Differential Integral Equations 25 (2012), no. 1-2, 143-200. MR 2906551
  • [27] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38. MR 1150597 (93d:58158), https://doi.org/10.1155/S1073792892000047
  • [28] Laurent Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series, vol. 289, Cambridge University Press, Cambridge, 2002. MR 1872526 (2003c:46048)
  • [29] Eric T. Sawyer and Richard L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients, Mem. Amer. Math. Soc. 180 (2006), no. 847, x+157. MR 2204824 (2007f:35037), https://doi.org/10.1090/memo/0847
  • [30] Eric T. Sawyer and Richard L. Wheeden, Degenerate Sobolev spaces and regularity of subelliptic equations, Trans. Amer. Math. Soc. 362 (2010), no. 4, 1869-1906. MR 2574880 (2010m:35077), https://doi.org/10.1090/S0002-9947-09-04756-4
  • [31] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243-279. MR 1809341 (2002b:46059), https://doi.org/10.4171/RMI/275
  • [32] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and $ L^p$-Liouville properties, J. Reine Angew. Math. 456 (1994), 173-196. MR 1301456 (95i:31003), https://doi.org/10.1515/crll.1994.456.173
  • [33] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275-312. MR 1355744 (97b:35003)
  • [34] K. T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (1996), no. 3, 273-297. MR 1387522 (97k:31010)
  • [35] Karl-Theodor Sturm, On the geometry defined by Dirichlet forms, Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993), Progr. Probab., vol. 36, Birkhäuser, Basel, 1995, pp. 231-242. MR 1360279 (96j:31009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J70, 35J60, 35B65, 46E35, 31E05, 30L99

Retrieve articles in all journals with MSC (2010): 35J70, 35J60, 35B65, 46E35, 31E05, 30L99


Additional Information

Lyudmila Korobenko
Affiliation: Department of Mathematics, University of Calgary, Calgary, Alberta, Canada AB T2N 1N4
Email: lkoroben@ucalgary.ca

Diego Maldonado
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
Email: dmaldona@math.ksu.edu

Cristian Rios
Affiliation: Department of Mathematics, University of Calgary, Calgary, Alberta, Canada AB T2N 1N4
Email: crios@ucalgary.ca

DOI: https://doi.org/10.1090/S0002-9939-2015-12556-7
Keywords: Sobolev inequality, Moser iteration, subunit metric spaces, doubling condition
Received by editor(s): December 1, 2013
Received by editor(s) in revised form: March 4, 2014, and June 4, 2014
Published electronically: March 18, 2015
Additional Notes: The second author was supported by the US National Science Foundation under grant DMS 1361754
The third author was supported by the Natural Sciences and Engineering Research Council of Canada
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society