Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rogers and Shephard inequality for the Orlicz difference body


Authors: Fangwei Chen, Wenxue Xu and Congli Yang
Journal: Proc. Amer. Math. Soc. 143 (2015), 4029-4039
MSC (2010): Primary 52A20, 52A40, 52A38, 52A39
DOI: https://doi.org/10.1090/proc12720
Published electronically: May 26, 2015
MathSciNet review: 3359591
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The inequalities involving the volume of convex bodies play an important role in convex geometry. In this paper, the Rogers and Shephard inequality for the Orlicz difference body of a convex body in the two-dimensional case is established.


References [Enhancements On Off] (What's this?)

  • [1] Chiara Bianchini and Andrea Colesanti, A sharp Rogers and Shephard inequality for the $ p$-difference body of planar convex bodies, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2575-2582. MR 2390529 (2009d:52011), https://doi.org/10.1090/S0002-9939-08-09209-5
  • [2] Károly J. Böröczky, Stronger versions of the Orlicz-Petty projection inequality, J. Differential Geom. 95 (2013), no. 2, 215-247. MR 3128983
  • [3] K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), 1974-1997.
  • [4] -, The logrithmic Minkowski problem, J. Amer. Math. 26 (2013), 831-852.
  • [5] Stefano Campi and Paolo Gronchi, On the reverse $ L^p$-Busemann-Petty centroid inequality, Mathematika 49 (2002), no. 1-2, 1-11 (2004). MR 2059037 (2005d:52006), https://doi.org/10.1112/S0025579300016004
  • [6] S. Campi and P. Gronchi, The $ L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128-141. MR 1901248 (2003e:52011), https://doi.org/10.1006/aima.2001.2036
  • [7] Stefano Campi and Paolo Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393-2402 (electronic). MR 2213713 (2007a:52010), https://doi.org/10.1090/S0002-9939-06-08241-4
  • [8] Stefano Campi and Paolo Gronchi, Volume inequalities for $ L_p$-zonotopes, Mathematika 53 (2006), no. 1, 71-80 (2007). MR 2304053 (2007m:52011), https://doi.org/10.1112/S0025579300000036
  • [9] F. Chen, C. Yang, and J. Zhou, The Orlicz affine isoperimetric inequality, Math. inequal. Appl. 17 (2014), 1079-1089.
  • [10] F. Chen, J. Zhou, and C. Yang, On the reverse Orlicz Busemann-Petty centroid inequality, Adv. Appl. Math. 47 (2011), 820-828.
  • [11] Kai-Seng Chou and Xu-Jia Wang, The $ L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33-83. MR 2254308 (2007f:52019), https://doi.org/10.1016/j.aim.2005.07.004
  • [12] Wm. J. Firey, $ p$-means of convex bodies, Math. Scand. 10 (1962), 17-24. MR 0141003 (25 #4416)
  • [13] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355-405. MR 1898210 (2003f:26035), https://doi.org/10.1090/S0273-0979-02-00941-2
  • [14] Richard J. Gardner, Daniel Hug, and Wolfgang Weil, The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities, J. Differential Geom. 97 (2014), no. 3, 427-476. MR 3263511
  • [15] Christoph Haberl, $ L_p$ intersection bodies, Adv. Math. 217 (2008), no. 6, 2599-2624. MR 2397461 (2009a:52001), https://doi.org/10.1016/j.aim.2007.11.013
  • [16] C. Haberl, E. Lutwak, D. Yang, and G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485-2510.
  • [17] C. Haberl and F. Schuster, Asymmetric affine $ L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), 641-648.
  • [18] Christoph Haberl and Franz E. Schuster, General $ L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1-26. MR 2545028 (2010j:52026)
  • [19] Qingzhong Huang and Binwu He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom. 48 (2012), no. 2, 281-297. MR 2946448, https://doi.org/10.1007/s00454-012-9434-4
  • [20] Ai-Jun Li and Gangsong Leng, A new proof of the Orlicz Busemann-Petty centroid inequality, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1473-1481. MR 2748442 (2012h:52022), https://doi.org/10.1090/S0002-9939-2010-10651-2
  • [21] Monika Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158-168. MR 1942402 (2003j:52012), https://doi.org/10.1016/S0001-8708(02)00021-X
  • [22] Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150. MR 1231704 (94g:52008)
  • [23] Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294. MR 1378681 (97f:52014), https://doi.org/10.1006/aima.1996.0022
  • [24] E. Lutwak, D. Yang, and G. Zhang, $ L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111-132.
  • [25] -, Sharp affine $ L_p$ sobolev inequalities, J. Differential Geom. 62 (2002), 17-38.
  • [26] -, $ L_p$ John ellipsoids, Proc. Lond. Math. Soc. 90 (2005), 497-520.
  • [27] -, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365-387.
  • [28] -, Orlicz projection bodies, Adv. Math. 223 (2010), 220-242.
  • [29] Mathieu Meyer and Elisabeth Werner, On the $ p$-affine surface area, Adv. Math. 152 (2000), no. 2, 288-313. MR 1764106 (2001g:52012), https://doi.org/10.1006/aima.1999.1902
  • [30] H. Rademacher, F. Ber. Deutsch, Math. Verein 36 (1925), 64-79.
  • [31] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220-233. MR 0092172 (19,1073f)
  • [32] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270-281. MR 0101508 (21 #318)
  • [33] C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathematika 5 (1958), 93-102. MR 0104203 (21 #2960)
  • [34] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • [35] C. Schütt and E. Werner, Surface bodies and p-affine surface area, Adv. Math. 187 (2004), 98-145.
  • [36] G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229-236. MR 0179686 (31 #3931)
  • [37] Alina Stancu, The discrete planar $ L_0$-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160-174. MR 1901250 (2003e:52010), https://doi.org/10.1006/aima.2001.2040
  • [38] Dongmeng Xi, Hailin Jin, and Gangsong Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math. 260 (2014), 350-374. MR 3209355, https://doi.org/10.1016/j.aim.2014.02.036
  • [39] Baocheng Zhu, Jiazu Zhou, and Wenxue Xu, Dual Orlicz-Brunn-Minkowski theory, Adv. Math. 264 (2014), 700-725. MR 3250296, https://doi.org/10.1016/j.aim.2014.07.019
  • [40] Du Zou and Ge Xiong, Orlicz-John ellipsoids, Adv. Math. 265 (2014), 132-168. MR 3255458, https://doi.org/10.1016/j.aim.2014.07.034

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A20, 52A40, 52A38, 52A39

Retrieve articles in all journals with MSC (2010): 52A20, 52A40, 52A38, 52A39


Additional Information

Fangwei Chen
Affiliation: Department of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, Guizhou 550004, People’s Republic of China
Email: cfw-yy@126.com, chen.fangwei@yahoo.com

Wenxue Xu
Affiliation: School of Mathematics and Statistics, Southwest University, Chongqing 400715, People’s Republic of China
Email: xwxjk@163.com

Congli Yang
Affiliation: School of Mathematics and Computer Science, Guizhou Normal University, Guiyang, Guizhou 550001, People’s Republic of China
Email: yangcongli@gznu.edu.cn

DOI: https://doi.org/10.1090/proc12720
Keywords: Orlicz linear combination, difference body, Orlicz difference body
Received by editor(s): September 28, 2012
Published electronically: May 26, 2015
Additional Notes: The work was supported in part by CNSF (Grant No. 11161007, Grant No. 11101099, Grant No. 11401486), West Light Foundation of the Chinese Academy of Sciences, Guizhou Foundation for Science and Technology (Grant No. [2014]2044, Grant No. [2012]2273), Guizhou Technology Foundation for Selected Overseas Chinese Scholar and Doctor foundation of Guizhou Normal University.
Communicated by: Michael Wolf
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society