Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Critical sets of proper holomorphic mappings


Authors: Sergey Pinchuk and Rasul Shafikov
Journal: Proc. Amer. Math. Soc. 143 (2015), 4335-4345
MSC (2010): Primary 32D15, 32V40, 32H02, 32H04, 32H35, 32M99, 32T25, 34M35
DOI: https://doi.org/10.1090/proc/12529
Published electronically: June 18, 2015
MathSciNet review: 3373932
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if a proper holomorphic map $ f: \mathbb{C}^n \to \mathbb{C}^N$, $ 1<n\le N$, sends a pseudoconvex real analytic hypersurface $ M$ of finite type into another such hypersurface, then any $ (n-1)$-dimensional component of the critical locus of $ f$ intersects both sides of $ M$. We apply this result to the problem of boundary regularity of proper holomorphic mappings between bounded domains in $ \mathbb{C}^n$.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Baouendi and Linda Preiss Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent. Math. 93 (1988), no. 3, 481-500. MR 952280 (90a:32036), https://doi.org/10.1007/BF01410197
  • [2] Steven R. Bell, Biholomorphic mappings and the $ \bar \partial $-problem, Ann. of Math. (2) 114 (1981), no. 1, 103-113. MR 625347 (82j:32039), https://doi.org/10.2307/1971379
  • [3] Steven Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385-396. MR 659947 (84b:32037a)
  • [4] E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477 (92b:32016)
  • [5] K. Diederich and J. E. Fornæss, Proper holomorphic mappings between real-analytic pseudoconvex domains in $ {\bf C}^n$, Math. Ann. 282 (1988), no. 4, 681-700. MR 970228 (89m:32045), https://doi.org/10.1007/BF01462892
  • [6] Klas Diederich and John Erik Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129-141. MR 0437806 (55 #10728)
  • [7] Klas Diederich and John E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), no. 2, 371-384. MR 0477153 (57 #16696)
  • [8] Klas Diederich and John E. Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), no. 3, 575-592. MR 554386 (81h:32027), https://doi.org/10.2307/1971240
  • [9] K. Diederich and J. E. Fornæss, Proper holomorphic mappings between real-analytic pseudoconvex domains in $ {\bf C}^n$, Math. Ann. 282 (1988), no. 4, 681-700. MR 970228 (89m:32045), https://doi.org/10.1007/BF01462892
  • [10] Klas Diederich and Sergey Pinchuk, Proper holomorphic maps in dimension $ 2$ extend, Indiana Univ. Math. J. 44 (1995), no. 4, 1089-1126. MR 1386762 (97g:32031), https://doi.org/10.1512/iumj.1995.44.2021
  • [11] Klas Diederich and Sergey Pinchuk, Reflection principle in higher dimensions, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 703-712 (electronic). MR 1648118 (2000d:32031)
  • [12] Klas Diederich and Sergey Pinchuk, Regularity of continuous CR maps in arbitrary dimension, Michigan Math. J. 51 (2003), no. 1, 111-140. MR 1960924 (2004k:32058a), https://doi.org/10.1307/mmj/1049832896
  • [13] Klas Diederich and Sergey Pinchuk, Analytic sets extending the graphs of holomorphic mappings, J. Geom. Anal. 14 (2004), no. 2, 231-239. MR 2051685 (2005d:32027), https://doi.org/10.1007/BF02922070
  • [14] Klas Diederich and Sergey Pinchuk, The geometric reflection principle in several complex variables: a survey, Complex Var. Elliptic Equ. 54 (2009), no. 3-4, 223-241. MR 2513536 (2010h:32015), https://doi.org/10.1080/17476930902759379
  • [15] Alexandru Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992. MR 1194180 (94b:32058)
  • [16] Xiaojun Huang, A removable singularity property for CR mappings between real analytic hypersurfaces, Comm. Partial Differential Equations 25 (2000), no. 1-2, 299-317. MR 1737549 (2001b:32073), https://doi.org/10.1080/03605300008821514
  • [17] J. J. Kohn, Subellipticity of the $ \bar \partial $-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79-122. MR 512213 (80d:32020), https://doi.org/10.1007/BF02395058
  • [18] H. Lewy, On the boundary behaviour of holomorphic mappings, Acad. Naz. Lincei 35 (1977), no 1, 1-8.
  • [19] S. I. Pinčuk, The analytic continuation of holomorphic mappings, Mat. Sb. (N.S.) 98(140) (1975), no. 3(11), 416-435, 495-496 (Russian). MR 0393562 (52 #14371)
  • [20] Sergey Pinchuk and Kaushal Verma, Analytic sets and the boundary regularity of CR mappings, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2623-2632 (electronic). MR 1838785 (2003b:32040), https://doi.org/10.1090/S0002-9939-01-05970-6
  • [21] S. M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53-68. MR 0463482 (57 #3431)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32D15, 32V40, 32H02, 32H04, 32H35, 32M99, 32T25, 34M35

Retrieve articles in all journals with MSC (2010): 32D15, 32V40, 32H02, 32H04, 32H35, 32M99, 32T25, 34M35


Additional Information

Sergey Pinchuk
Affiliation: Department of Mathematics, Rawles Hall, Indiana University, 831 East 3rd Street, Bloomington, Indiana 47405
Email: pinchuk@indiana.edu

Rasul Shafikov
Affiliation: Department of Mathematics, The University of Western Ontario, London, Ontario N6A 5B7 Canada
Email: shafikov@uwo.ca

DOI: https://doi.org/10.1090/proc/12529
Keywords: Holomorphic mappings, holomorphic correspondences, real hypersurfaces, Segre varieties, boundary regularity, analytic continuation
Received by editor(s): February 3, 2014
Received by editor(s) in revised form: April 17, 2014, and April 24, 2014
Published electronically: June 18, 2015
Communicated by: Franc Forstneric
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society